Korean Joumnal of Remote Sensing, Vol.18, No.3, 2002, pp.147~153

Software Buffering Technique For Real-time
Recording of High Speed Satellite Data

Dong-Seok Shin*, Wook-Hyun Choi*, Moon-Gyu Kim**, and Won-Kyu Park*

Image/System Division, SaTReC Initiative Co. Ltd.*
Remote Sensing Division, Satellite Technology Research Center, KAIST**

Abstract : The real-time reception and recording of down-link mission data from a satellite requires
the highest reliability because the data lost in receiving process cannot be recovered. The data receiving
and recording system has moved from a set of dedicated hardware and software components to
commercial-off-the-shelf (COTS) components in order to reduce the system cost as well as to upgrade the
system easily for handling other satellite data. The use of COTS hardware and middleware components
prevents the system developer from correcting or modifying the internal operations of the COTS
components, and hence, instant performance degradation of the COTS components which affects the
reliable data acquisition must be covered by a software algorithm. This paper introduces the instant
performance problem of a COTS data recording device which leads to the data loss in the real-time data
reception and recording process. As a result, the requirement of the modification of the conventional data
read/write technique is issued. In order to overcome the data loss problem due to the use of COTS
components and the conventional software technique, a new algorithm called a software buffering
technique is proposed. The experiments show that the application of the proposed technique results in
reliable realtime reception and recording of high speed serial data.

Key Words : Software Buffering, Data Reception and Recording.

1. Introduction

As the spatial resolution of spaceborne Earth
observation payloads becomes finer, the rate of the real-
time payload data transmission has increased rapidly.
The KOMPSAT-2 MSC data, for example, is designed
to be transmitted to a ground station at the rate of
320Mbps (KARI, 2000). The transmission rates of the
spaceborne payloads such as high-resolution optical

cameras, synthetic aperture radars (SAR) and hyper-

Received 27 April 2002; Accepted 2 June 2002.

spectral sensors are expected to be a level of S00Mbps
in the near future.

The real-time data receiving and recording system in
a ground station must also be upgraded in order to cope
with the increasing down-link data rate. In the very early
stage of the real-time data recording system
development, the received and demodulated serial
digital data were recorded to a dedicated digital tape
such as a high-density digital tape (HDDT) (EOC,
1994). The usage of HDDT and the corresponding tape

~147-

Korean Journal of Remote Sensing, Vol.18, No.3, 2002

drive, HDDR (High Density Digital Recorder), showed
several drawbacks. Firstly, they were not compatible
with computers, and therefore, additional interface
hardware is required for the playback and processing of
the recorded data. In addition, the HDDR equipment
was very costly due to its dedicated usage for high-rate
data recording only. From early 1990, the real-time
satellite data recording system began to adopt a
technique which ingested the received serial data to a
commercial-off-the-shelf(COTS) computer and
recorded the data to a computer compatible storage
equipment, such as a hard disk drive or redundant array
of independent disks (RAID) (SPOTIMAGE, 1997).
Since the payload data transmission system on-board
the satellite is a integrated and dedicated hardware
module, its data handling speed is generally higher than
the corresponding data receiving and recording system
in a ground station which uses COTS components. The
COTS components include the operating system (OS) of
the data receiving computer, an I/O host bus adapter
such as a SCSI controller, device drivers as well as a
RAID controller. It is very difficult to modify the
internal functions and capabilities of the COTS
components, and hence, any temporary malfunctioning
or performance degradation of a COTS component
cannot be prevented by a receiving and recording

system developer. In practice, the data writing to a

RAID system shows periodic and non-periodic speed
degradations which result in the loss of receiving data
(NLANR, 1998).

This paper describes a technique, called a software
buffering technique, which enables reliable data
recording in the case of instant speed degradation of
COTS components. Section 2 describes the overall
architecture and operation of the real-time satellite data
receiving and recording system. The problem of the
previous operation procedure is mentioned in Section 3.
The software buffering technique is described in Section
4 in details. The experimental verifications of the

software buffering technique are shown in Section 5.

2. Data Receiving and Recording Process

Fig. 1. shows a simplified view of the satellite data
receiving and recording system (Kim et al., 2001). The
down-link data are demodulated and bit-synchronized in
the demodulator. The resultant serial data and
synchronized clock signal is ingested to the data
receiving card (DRC). DRC converts the serial data to a
parallel form, and stores them in a internal memory
(FIFO) temporarily. When the DRC FIFO is filled with
a certain amount of data, DRC generates an interrupt to

the host computer. The software in the host computer

Host Computer
RAM CPU
Demod. . DRC
RAID RAID HBA

Fig. 1. System Hardware Components.

~148-

Software Buffering Technique For Real-fime Recording of High Speed Satellite Data

Interrupt attach

|

Interrupt recognition

Recognized?

Data read from DRC

l

Data write to RAID

|

Fig. 2. Sequential data read and write flow.

recognizes the interrupt from DRC, transfers data from
DRC HIFO to the main memory, and finally sends the
data to RAID through the RAID host bus adapter
(HBA).

In summary, the operation process of the data

receiving and recording procedure consists of three

sequential steps.

- interrupt recognition

- data read from DRC FIFO

- data write to RAID

Fig. 2 shows the operation flow of the sequential data
read and write algorithm which is iterated until the end

of data acquisition.

3. Problem Description

The problem of the sequential data read and write
process described in the previous section arises from the
two factors.

- limited size of DRC FIFO

- instant speed degradation of RAID

The commercially available and commonly used
FIFO chips are provided with the size of up to 512KB
currently. The physical size limitation of the host
adaptor card, DRC, also limits the maximum size of the
internal FIFO. In practice, four FIFO chips which are

connected in a cascaded manner are integrated in DRC

RAID data writing speed
185
180
P
175
2 MR ISR LIRS L Jig
é 165 $le L l *
<o) * 23 [3 T
é +* * + ¢ y ¢ l
'i 160 &
& > - 4?"0
155
150
145
w2 E854948 RELSTFITEETRARR

Time (seconds)

Fig. 3. RAID data writing speed example.

~149-

Korean Journal of Remote Sensing, Vol.18, No.3, 2002

currently providing 2MB in total. Since the input data is
ingested continuously into the DRC FIFO even during
the data read process from the host software, it is
required to preserve some data space in FIFO during the
data read and write process of the host software. In this
sense, the host interrupt is generated when the half of the
total FIFO space is filled up.

Due to the limited size of DRC FIFO the data is lost
if the two successive data read steps do not occur
frequently enough. In the case of 300Mbps input data
rate and a total of 2MB DRC FIFO size, for example,
the time for filling a half of FIFO up takes 26.7 milli-
seconds. In other words, if the time between the two
successive data read steps is larger than 27 milli-
seconds, the FIFO is filled up and the incoming data is
lost.

Although the average speed for the interrupt
recognition and the data read/write procedures is high
enough to meet the performance requirement of the real-
time data recording process, the data writing process
shows instant and frequent speed degradation as shown
in Fig. 3. This instant speed degradation may be caused
by internal operations of the operating system, the RAID
host bus adaptor or the RAID controller. Whatever the
reason of the instant speed degradation of data writing
process is, the problem cannot be solved easily because
all problematic candidates are COTS components.

As described above, the instant speed degradation of
the COTS components in data writing process causes
data loss, and consequently unreliable data receiving and
recording capability.

Several solutions on this problem can be addressed.
For example, a number of FIFO chips are integrated into
DRC so that the incoming data are stored continuously
in DRC FIFO even when the instant speed degradation
occurs. The RAID with much higher performance can
be adopted so that even the instantly degraded data
writing speed satisfies the performance requirement of

the system. In this paper, the simplest, the least costly

and the most feasible solution, named as software

buffering technique, is proposed.

4. Software Buffering Technique

The concept of the software buffering technique is
simple. The software uses a large amount of host main
memory, say ~50MB, as a buffer. The memory buffer
eventually plays the same role as the DRC FIFO does.

This software buffering technique can be achieved by
using two different threads which run concurrently (the
read thread and the write thread).

The conceptual diagram of the software buffering is
shown in Fig. 4. As soon as the read thread recognizes
the first interrupt from DRC, it reads the data from DRC
FIFO and stores them to the memory buffer at the count
0. The write thread starts to write the data from the
buffer count O while the read thread returns directly to
the next interrupt recognition. When the read thread
detects the next interrupt from DRC, it checks whether
the current write thread has completed its writing
operation. If completed, the read thread puts the next
data from DRC FIFO to the buffer count 0. Otherwise, it
puts the data to the buffer at the next count, i.e. count 1.

memory buffer
count
0
Q
N
172
S
i — =
-
— B
Q
2 -

Fig. 4. Memory buffering sequence.

-150-

Software Buffering Technique For Real-fime Recording of High Speed Sarellite Data

Read Thread (main)

> Interrupt attach
Y
Interrupt recognition
I

readLock — TRUE
currentLockCount «— currentBufferCount

'

Data read from DRC (at currentLockCount)

.

currentBufferCount «— currentLockCount +1
readLock —FALSE

Write thread creation

Write thread (sub)

Static startCount «— 0

!

Data write RAID
(from startCount to currentBufferCount-1)

startCount
«— currentBufferCount
currentBufferCount — 0
startCount —Q
@

Fig. 5. Software buffering algorithm.

The write thread writes the whole data in the buffer to
RAID. This procedure prevents the incoming data from
being lost due to the instant writing speed degradation
because the incoming data is temporarily stored at the
large host memory buffer while the writing operation is
being carried out. As long as the average data read/write
speed is higher than the incoming data rate, this software
buffering technique provides reliable real-time data
acquisition process.

The detailed flow of the proposed software buffering

algorithm is shown in Fig. 5. The key issue of the
algorithm is the use of semaphore which locks and
unlocks the current buffer count value, so that the two
concurrently running threads can be synchronized

perfectly.

5. Experiments

The experiments were carried out for showing the

-151-

Korean Journal of Remote Sensing, Vol.18, No.3, 2002

data acquisition reliability of the proposed software
buffering algorithm as well as the conventional
sequential data read/write algorithm. The real-time data
transmission was simulated by using a data generator,
Tektronix DG2040, which can generates the ECL level
serial data up to 1Gbps. The transmitted data was
ingested to DRC with 2MB internal FIFO, and the
software with a configurable buffering technique was
used for reading and writing the data from DRC to
RAID. A PentiumlIll 1GHz Windows 2000 was used as
a host computer. A Netcom LX5000 RAID with five
data striping disks and U160 SCSI connection was used
as a data recording device.

A data pattern was programmed to the data generator
in order to detect the amount of data loss during the data
receiving and recording process. The pattern consists of
consecutive packets and each packet consists of a packet
synchronization block, an incremental packet counter
block and a dummy data block, which results in 256
bytes in total.

The purpose of the experiments is not to quantify the
data loss due to system noise (e.g. bit error rate) but the
data loss due to the instant overflow of the system.
Therefore, the amount of the lost data can be calculated
by replaying the recorded data and counting the missing
packet counter.

Table 1 shows the results of the experiments. Up to
the input data rate of 260Mbps, both techniques
recorded the data without any lost packets. This means

that the level of instant performance degradation is small

Table 1. Number of lost packets.

data rate size # of lost packets

(Mbps) (GB) sequential buffering
260 38 0 0
280 41 14 0
300 44 91 0
320 4.7 33 0
340 50 12 0
360 52 3027 1285

enough for using DRC FIFQ buffer. Both techniques
resulted in packet loss when the data rate is higher than
360Mbps. In other words, the average (not instant)
speed of the read/write procedure cannot catch up with
the input data rate in spite of using the software
buffering technique.

However, the conventional technique showed packet
loss errors on the data rate range of 280Mbps to
340Mbps while the proposed software buffering
technique recorded the input data without any data loss.
The packet loss of the conventional technique is due to
the instant performance degradation of COTS
components. The results show that the periodicity and
the level of the instant degradation is not regular. The
proposed technique provided the reliable data
acquisition process by buffering the input data in a large

amount of host memory.

6. Conclusions and Discussions

In this paper, the software buffering technique was
proposed in order for achieving reliable operation of
real-time high speed satellite data. The problems of
using COTS components and the sequential read/write
technique were described. It was shown that the
proposed technique solved the data loss problem due to
the instant speed degradation of the COTS components.

In this paper, only data read and write operations
were described. When the real-time processing is
required during the data reception and recording
operation, a modified algorithm which is more
complicated than the algorithm shown in Fig. 5 must be
proposed. The real-time processing is highly required
when the system receives the image data from a satellite
because the system provides, in general, a real-time
moving window display (MWD) function. In this sense,
a new software thread caﬂed a processing thread must
be defined in addition to the read and the write threads.

-152-

Software Buffering Technique For Real-time Recording of High Speed Satellite Data

The relationship of these three threads must be defined
clearly in order to achieve reliable data archiving as well

as graphical display of the image being received.

References

EOC, 1994. JERS-1 Data Users Handboook, Earth
Observation Center, National Space Development
Agency of Japan.

KARI, 2000. KOMPSAT-2 System Requirements

Review, Korea Aerospace Research Institute.

Kim, M.G., T. Kim, S.O. Park, D. Shin, M.N. Hong, S.
Kwak, W. Choi, Nov 2001. Automated Image
Reception, Processing and Distribution System
For High Resolution Remote Sensing Satellites,
Proceedings on Asian Conference on Remote
Sensing, Singapore.

NLANR, 1998, Hard Disk Continuous-Write
Measurements, http://moat.nlanr.net/Dskwtst/

SPOTIMAGE, Feb 1997. SPOT Receiving Stations,
SOSS XI Meeting, Maspalomas, Spain.

-153-

