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Abstract : We have investigated the role of slow inhibitory neurons in spontaneous activity using a model network controlled
by stochastic mean field theory based on Integrated-and-Fire excitatory and fast inhibitory neurons. It is found that inputting
slow inhibitory neurons to such network induces stable spontaneous activity at a much lower threshold than without slow
inhibitory neurons in the network. This threshold range is low enough to be considered as biological threshold of cortical
neurons. Only slow inhibitory neurons can give adjustable negative feedback in the network keeping lower rate and lower
threshold.

INTRODUCTION inhibitory neurons are mediated by GAba-A, slow inhibitory

: neurons are mediated by GABA-B. The integration time

In the brain there exist several kinds of neurons. The constants of each kinds neurons are diverse from 5~10
role of each of neurons has not been completely studied ms for fast inhibitory neurons to 100~1000 ms for slow
and is still under debate in many points. Especially several inhibitory neurons. Many recent experiments have shown
kinds of inhibitory neurons exist in cerebral cortex in brain. that the inhibitory neurons are involved in the stahility of
The inhibitory neurons are mediated by different kinds of cortical network, long term adaptation, and high frequency
neurotransmitters, GABAergic neurotransmitters. While fast bursting mode of brain rhythm in cerebral cortex or

hippocampus [1,2,3,4,5,61.
Generally in neural network modeling many studies
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EAAR} R (110-7444) A SEWA E2T AAE BAA) have described theoretically that the inhibitory neurons
Aeaasy oEstaTs play a crucial role in giving stability to the network, and
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meaningful stable activity [1,2,7].

Neurophysiological experiments show two kinds of
activities! spontaneous activity and selective delay activity
in the coriex of monkey while performing cognitive tasks
involving delayed response {89,101

In this study we have investigated the effect of slow
inhibitory neurons in the stochastic neural network model
which has been proposed to show the coexistence of both
types of activities by Amit [1]. This neural model had
already been considered excitatory and inhibitory feedback,
however the stable solution does not exist at the range of
biological threshold, in which a neuron can fire after recei-
ving 100~300 synaptic inputs[2]. As considering the slow
inhibitory feedback in theoretical model network we
conjecture that the role of slow inhibitory neuron is
deeply related to the stability and the robustness of brain
information processing.

In section 2, the model network will be described; here
we consider only spontaneous activity prior to learning.
The study of slow inhibitory neurons for selective delay
activity wil be handled in elsewhere. We chose the inte-
gration time constant as 100 ms. In section 3, the effect
of inputting slow inhibitory neurons will be described.

DESCRIPTION OF THE MODEL NETWORK

The medel network is composed of a local module of
about 10° neurons which consists of three kinds of neural
populations : excitatory neurons, fast and slow inhibitory
neurons. This local module has external noisy input from
outside of module. Without considering slow inhibitory
neurons, this kind of model network has already been
formulated by Amit and Brunnel [1]. It is known that
each neuron in cerebral cortex receives C~20000 synaptic
contacts from other cells [2].

In this model network, every neuron has synaptic input
from excitatory and inhibitory cells. The number of
synaptic contacts Ci is about 20000, the numbers from
fast inhibitory cells Ci is 1000 and Ci; from slow inhi-
bitory cells is also 1000. A fraction x of excitatory contacts
comes from the local module, while remaining fraction
(1-x) of excitatory connections comes from outside the
local network, and are activated at the rate v,

Each neuron in the local network is characterized by
its depolarization at the soma V(t), which obeys the
integrator equation:

T V() = -V)+(t) : o)
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where 7(~100 ms) is the .integration time constant of
the membrane depolarization at the soma, and I(t) is the
synaptic current charges developed from the part of the
soma. Both excitatory and inhibitory neurons are leaky
integrated-and-fire neurons. Note that the current is
expressed in the unit of potential. The absolute refractory
period 75(~2 ms) follows the emission of a spike when
depolarization reaches the threshold 6. The effective
afferent current obeys the equation:

7K =— D+ Zjlf,-rga( £ b @)

where 7’ is the time constant of the conductance changes
at the synaptic sites, 7 goes over the synaptic sites on the
dendrites, the sum over % is over all spikes arriving at a
given site, and ¢ is the time of arrival of spike number
k at synapse 1.

If one assumes 7 <7, Eq.(2) is reduced to:

tV(D=—V+ gljirzb(tf—t) (3

The depolarization V(t) is governed by Eq.(3), and a
spike is emitted every time when the depolarization V(t)
reaches the threshold. The output spike rate is given by:

8i—ui
Viow= $:i(1t; 0= (ro+ TifH_ dug(p)™t, i=E,I
with
W)=V wexp A1+ erf ()], oy

where v; .+ iS the output spike rate at synapse i, o,
and p; are mean afferent and its standard deviation in the
absence of a threshold respectively, 6; is the threshold,
H; is the post-spike hyper polarization, and z; is integra—
tion time constant characterized by the type of neurons,
with /=E, I, G indicating whether the neuron is exci-
tatory, fast or slow inhibitory neuron, respectively. p is
the rate-dependent mean of the Gaussian distribution of
afferents depolarizing the cell and erf(x) is the error

function defined by the integral, erf (;z)=72; fo #exp(— w*) dw.

Prior to learning the network parameters are set for



the model:

1. Three types of neurons receive the equal number of
excitatory synaptic input from inside the local module
x=0.5 (the fraction of the

excitatory contacts from local module)

and from outside:

. The post-spike hyper polarizations H; are set to zero

for i’s.

. The relative standard deviation of synaptic efficacies
are equal to 6=1 for all synaptic types.

. The ratio of average strengths of the fas}c inhibi}ory to
21 jii
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the slow inhibitory to the excitatory synapses are chosen

the excitatory synapses are chosen as:

as L = J6 _ o and the fast inhibitory to the
Jee  Jee
excitatory synapses are chosen as! Ja _ Jie =g3.
] EE ] IE

The mean field theory considered is based on the
neural spike rate assuming that each neural spike is
independent Poissonian train of spikes. If a neuron
receives a large number of independent spike trains from
synaptic contacts, then I(t) has
Gaussian distribution with mean afferent ¢ and standard
deviation ¢ [1,11,12].

In the mean field theory the output rate of a neuron is

determined by mean g; and standard deviation o; of its

for this model by

the depolarization

inputs in interval r; introducing
adjustable slow inhibitory feedback.

Those standard deviations of
membrane potential of excitatory cells are determined

from the three types of synaptic inputs:

mean input and

te= Cpaler [xvpte+ vey tel — CerJervite— CroJpcVetE (5)

0= 1+ 8 CepJox [xvpto+ Ve 1l + Coy Javitp+ Cre Fecvets)

(6)

, where C is the number of synapses per neuron, J is
the mean of efficacies of the synapses, and ves vi, ve

are the rates of excitatory, fast inhibitory and slow
inhibitory neurons in turn.
For a fast inhibitory neurons:
#r= CipJw Ixverit veutd — Colpviti— Cidlicvetr (7
F=+ N Cpfig [xvet+vet)+ Culyvit+ CiGligvg ) )

For a slow inhibitory neurons:
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#c=Ceelce [xVETG+ Veu Tcl — CelJorvite— Ceglocvete (9)
=1+ 2(C e Por [xvstot varc) + Colbrvitit CogJoc vato) .

(10)
Self reproducing rates for neurons of the three
populations are given by the simultaneous solution of the

coupled equations:

ve= {1, 0p) (11)
vi= oLy, 07 (12)
ve=dclte, 76). (13)

The dynamical Eq.(1), implies the time

dependence of x« and ¢ of the depolarization in Ref. [2],

equation,

ie. in which vg, v;, and v; are given as function of

1« and ¢ via Eq.(4). The self-reproducing rates are the
stable fixed points of the following dynamical equations:

Al Vel = —ul Vel + Cealael xvirsl — Colovee— ”
CrclcVor
3 (L VD = =20 VE1*+ Cpaferl #vete+ Veuts) — Cedimvie
Crelcvere
(15)
The inhibitory neurons have similar dynamical
equations.

Under numerical analysis with the help of computer
program, programed by one of authors, we can find the
stable fixed point produced by the dynamical variation.
Here, prior to learning we chose common parameter for
the model:

re=10 ms for excitatory neurons, 7;=0.57g

for fast inhibitory neurons, and z;=100 ms for slow

inhibitory neurons.

RESULTS AND DISCUSSION

The issue is whether the slow inhibitory feedback
considered can bring to the biological range of the
threshold that a neurons can fire after receiving 100~300
synaptic inputs. Previous models which does not consider
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slow inhibitory feedback have very higher threshold
beyond biclogical range even though the low spontaneous
activity is stable [1].

We have found several parameter sets which can give
low threshold of depolarization. We will use simple vector
notation for describing parameters: T=(rg, 15, 7¢) In unit
ms is for the integration time constant, C=(Cyg, Cy, Cig)
is for the number of the synaptic contact, g=(g,,g,&3)

is for the ratio of average strengths of the inhibitory to
the excitatory synapse, v={(vg vy, vy in Hz is for the
mean rlates of neurons of the three populations, and
O=(60y, 0,00 in ] is for the threshold.

For parameter set 7T=(10, 5, 100), C=(20000, 1000, 2000),
and g=(3,4,4) Low spontaneous rates for the three
populations are v=(3,6,7.5) and their thresholds are
©=(291.67, 181. 43, 162.53). All thresholds for three
kinds of neurons stay at the range, 100~300 times of
synaptic efficacy. The rate of slow inhibitory is higher in
comparison with the rates of other neurons. As we can
see in Eq.(5), due to the long integration time the input
from slow inhibitory neurons can contribute to reduce
mean potential with low spike rate. Simply inputting more
fast inhibitory neurons to make mean potential lower
causes hign rates of fast inhibitory neurons due to short
integration time. Only slow inhibitory neurons can give
adjustable negative feedback without spoiling stability of
network keeping lower rate and lower threshold.

In the view point of network, general inhibitory
feedback controls the stability of network regardless of
the magnitude of a threshold. In biological sense a high
threshold means that it needs many synaptic inputs to
generate spikes related to an information processing. It
implies that neural system needs more energy and more
time to perform a neural task in the brain.

We conjecture that the slow inhibitory neurons in the
brain are also involved in minimizing energy and time to
give much higher efficiency of information processing.
After learning the slow inhibitory neuron may also play
crucial role to lowering selective delay activity with the
same mechanism shown here.
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