The Practical Application of Aqueous Two-Phase Processes for the Recovery of Biological Products

  • Rito-Palomares, Marco (Department of Chemical Engineering, University of Cambridge, Departamento de Technologia de Alimentos, Instituto Technology de Estudios Superiores de Monterrey (ITESM))
  • Published : 2002.08.01

Abstract

Although the generic implementation of aqueous two-phase systems (ATPS) processes for the recovery of biological products has been exploited for several years, this has not resulted in a wide adoption of the technique. The main reasons involve the poor understanding of the mechanism governing phase formation and the behavior of solute partitioning in ATPS processes, the cost of phase forming polymers, and the necessary extended time to optimize the technique. In this review paper, some of the practical disadvantages attributed to ATPS are addressed. The practical approach exploited to design ATPS processes, the application to achieve process integration, the extended use for the recovery of high-value products, and the recent development of new low-cost ATPS, are discussed. It is proposed that the trend of the practical application of ATPS processes for the recovery of biological products will involve the purification of new high-value bioparticulate products with medical applications. Such a trend will give new impetus to the technique, and will draw attention from industries needing to develop new, and improve existing, commercial processes.

Keywords

References

  1. Bioseparation v.1 On protein partition in two-phase aqueous polymer systems Abbott, L. N.;D. Blankschtein;T. A. Hatton
  2. Partition of Cell Particles and Macromolecules(1st edition) Albertsson, P. -A.
  3. J. Chromatogr. v.711 Cutinase purification on poly(ethylene glycol)-hydroxypropyl starch aqueous two-phase systems Almeida, M. C.;A. Venancio;J. A. Teixeira;M. R. Aires-Barros https://doi.org/10.1016/S0378-4347(97)00680-4
  4. J. Chromatogr. v.743 Partitioning of whey proteins, bovine serum albumin and porcine insulin in aqueous two-phase systems Alves, J. G. L. F.;L. D. A. Chumpitaz;L. H. M. da Silva;T. T. France https://doi.org/10.1016/S0378-4347(00)00111-0
  5. Bioseparation v.6 Partitioning and purification of monoclonal antibodies in aqueous two-phase systems Andrews, B. A.;S. Nielsen;J. A. Asenjo
  6. J. Chem. Technol. Biotechnol. v.74 Direct process integration of cell disruption and fluidised bed adsorption for the recovery of intracellular proteins Bierau, H.;Z. Zhang;A. Lyddiatt https://doi.org/10.1002/(SICI)1097-4660(199903)74:3<208::AID-JCTB21>3.0.CO;2-P
  7. J. Chromatogr. v.743 Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumpilus and its application in kraft pulp bleaching Bim, M. A.;T. T. France https://doi.org/10.1016/S0378-4347(00)00223-1
  8. J. Chromatogr. v.743 Recovery in aqueous two-phase systems of nanoparticulates applied as surrogate mimics for viral gene therapy vectors Braas, G. M. F.;S. G. Walker;A. Lyddiatt https://doi.org/10.1016/S0378-4347(00)00056-6
  9. J. Chromatogr. v.680 Theory of phase formation in aqueous two-phase systems Cabezas, H. https://doi.org/10.1016/0378-4347(96)00042-4
  10. Separ. Sci. Technol. v.31 Technical aspects of extractive purification of penicillin fermentation broth by aqueous two-phase partitioning Guan, Y. X.;Z. Q. Zhu;L. H. Mei https://doi.org/10.1080/01496399608001067
  11. Bioseparation v.7 The application of aqueous two-phase systems to the purification of pharmaceutical proteins from transgenic sheep milk Harris, D. P.;A. T. Andrews;G. Wright;D. L. Pyle;J. A. Asenjo https://doi.org/10.1023/A:1007908703773
  12. Biotechnology v.12 Large-scale in situ isolation of periplasmic IGF-I from Escherichia coli Hart, R. A.;P. M. Lester;D. H. Reifsnyder;J. R. Ogez;S. E. Builder https://doi.org/10.1038/nbt1194-1113
  13. Biotechnol. Bioeng. v.59 Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports Hernandez-Justiz, O.;R. Fernandez-Lafuente;M. Terreni;J. M. Guisan https://doi.org/10.1002/(SICI)1097-0290(19980705)59:1<73::AID-BIT10>3.0.CO;2-3
  14. J. Chromatogr. v.711 Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resin Huddleston, J. G.;H. D. Willauer;K. R. Boaz;R. D. Rogers https://doi.org/10.1016/S0378-4347(97)00662-2
  15. Tibtech. v.9 The molecular basis of partitioning in aqueous two-phase systems Huddleston, J. G.;A. Veide;K. Kohler;J. Flanagan;S. -O. Enfors;A. Lyddiatt https://doi.org/10.1016/0167-7799(91)90130-A
  16. Partitioning in Aqueous Two-phase Systems; Theory, Methods, Uses and Application in Biotechnology Applications of phase partition in biotechnology Hustedt, H.;K.-H. Kroner;M. -R. Kula;Walter, H.(ed.);Brooks, D. E.(ed.);Fisher, D.(ed.)
  17. J. Chromatogr. v.711 Concentration and purification of β-glucosidase from Aspergillus niger by using aqueous two-phase partitioning Johansson, G.;K. Reczey https://doi.org/10.1016/S0378-4347(97)00601-4
  18. J. Chromatogr. v.711 Driving forces for phase separation and partitioning in aqueous two-phase systems Johansson, H. -O.;G. Karlstrom;F. Tjerneld;C. A. Haynes https://doi.org/10.1016/S0378-4347(97)00585-9
  19. Biotechnol. Bioeng. v.66 Thermoseparating water/polymer system: A novel onepolymer aqueous two-phase system for protein purification Johansson, H.-O.;J. Persson;F. Tjerneld https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<247::AID-BIT6>3.0.CO;2-5
  20. Biochem. Biophys. Res. Comm. v.255 Extractive cultivation of recombinant Escherichia coli using aqueous two phase systems for product and separation of extracellular xylanase Kulkarni, N.;A. Vaidya;M. Rao https://doi.org/10.1006/bbrc.1998.9912
  21. J. Chromatogr. v.680 Use of aqueous two-phase systems in sample preparation for polymerase chain reaction-based detection of microorganisms Lantz, P.-C.;F. Tjerneld;B. Harn-Hagerdal;P. Radstrom https://doi.org/10.1016/0378-4347(95)00496-3
  22. Biotechnol. Lett. v.22 Extractive cultivation of Lactococcus lactis using a polyethylene glycol/MgSO₄ center dot 7H₂O aqueous two-phase systems to produce nisin Li, C.;O. Y. Fan;J. H. Bai https://doi.org/10.1023/A:1005634626801
  23. J. Chromatogr. v.680 Ucon-benzoyl dextran aqueous two-phase systems: Protein purification with phase component recycling Lu, M.;P.-A. Albertsson;G. Johansson;F. Tjerneld https://doi.org/10.1016/0378-4347(95)00484-X
  24. J. Chromatogr. v.711 Variation of penicillin acylase partition coefficient with phase volume ratio in poly(ethylene glycol)-sodium citrate aqueous two-phase systems Marcos, J. C.;L. P. Fonseca;M. T. Ramalho;J. M. S. Cabral https://doi.org/10.1016/S0378-4347(97)00633-6
  25. J. Chromatogr. v.711 Aqueous two-phase systems for protein separation studies on phase inversion Merchuk, J. C.;B. A. Andrews;J. A. Asenjo https://doi.org/10.1016/S0378-4347(97)00594-X
  26. J. Chromatogr. v.711 Separation and purification of glucoamylase in aqueous two-phase systems by two-step extraction Minami, N. M.;B. V. Kilikian https://doi.org/10.1016/S0378-4347(98)00039-5
  27. J. Chromatogr. v.711 Purification of recombinant apolipoprotein A-1Milano expressed in Escherichia coli using aqueous two-phase extraction followed by temperature-induced phase separation Persson, J.;L. Nystrom;H. Ageland;F. Tjerneld https://doi.org/10.1016/S0378-4347(98)00029-2
  28. J. Chem. Technol. Biotechnol. v.74 Purification of recombinant proteins using thermoseparating aqueous two-phase system and polymer recycling Persson, J.;L. Nystrom;H. Ageland;F. Tjerneld https://doi.org/10.1002/(SICI)1097-4660(199903)74:3<238::AID-JCTB29>3.0.CO;2-Z
  29. Biotechnol. Prog. v.16 New polymers forming aqueous two-phase systems Pietruszka, N.;I. Y. Galaev;A. Kumar;Z. K. Brzozowski;B. Mattiasson https://doi.org/10.1021/bp000013g
  30. Biotechnol. Bioeng. v.66 Novel polymer-polymer conjugates for recovery of lactic acid by aqueous two-phase extraction Planas, J.;A. Kozlowski;J. M. Harris;F. Tjerneld;B. Hahn-Hagerdal https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<211::AID-BIT2>3.0.CO;2-1
  31. J. Chromatogr. v.711 Amine-based aqueous polymers for the simultaneous titration and extraction of lactic acid in aqueous two-phase systems Planas, J.;V. Varelas;F. Tjerneld;B. Hahn-Hagerdal https://doi.org/10.1016/S0378-4347(97)00663-4
  32. Biotechnol. Prog. v.15 Aqueous two-phase systems containing urea: Influence on phase separation and stabilization of protein conformation by phase component Ramsch, C.;L. B. Kleinelanghorst;E. A. Knieps;J. Thommes;M.-R. Kula https://doi.org/10.1021/bp990030+
  33. J. Chromatogr. v.743 Effect of biological suspensions on the position of the binodal curve in aqueous two-phase systems Rito-Palomares, M.;L. Cueto https://doi.org/10.1016/S0378-4347(00)00059-1
  34. J. Chromatogr. v.711 Influence of systems and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems Rito-Palomares, M.;M. Hernandez https://doi.org/10.1016/S0378-4347(98)00011-5
  35. J. Chem. Technol. Biotechnol. v.75 Practical implementation of aqueous two-phase processes for protein recovery from yeast Rito-Palomares, M.;A. Lyddiatt https://doi.org/10.1002/1097-4660(200007)75:7<632::AID-JCTB248>3.0.CO;2-7
  36. Process Biochemistry v.35 Generic application of an aqueous two-phase process for protein recovery from animal blood Rito-Palomares, M.;C. Dale;A. Lyddiatt https://doi.org/10.1016/S0032-9592(99)00119-3
  37. J. Chromatogr. v.743 Aroma compounds recovery from mycelial cultures in aqueous two-phase processes Rito-Palomares, M.;A. Negrete;E. Galindo;L. Serrano-Carreon https://doi.org/10.1016/S0378-4347(00)00073-6
  38. J. Chromatogr. v.680 Metal ion separation in polyethylene glycolbased aqueous biphasic systems: Correlation of partitioning behaviour with available thermodynamic hydration data Rogers, R. D.;A. H. Bond;C. B. Bauer;J. Zhang;S. T. Griffin https://doi.org/10.1016/0378-4347(95)00447-5
  39. J. Chromatogr. v.711 Partitioning of small organic molecules in aqueous biphasic systems Rogers, R. D.;H. D. Willauer;S. T. Griffin;J. G. Huddleston https://doi.org/10.1016/S0378-4347(97)00661-0
  40. J. Chromatogr. v.743 New aqueous two-phase systems based on cashew-nut tree gum and poly(ethylene glycol) Sarubbo, L. A.;L. A. Oliveira;A. L. F. Porto;H. S. Duarte;A. M. A. Carneiro-Leao;J. L. Lima-Filho;G. M. Campos-Takaki;E. B. Tambougi https://doi.org/10.1016/S0378-4347(99)00516-2
  41. J. Chromatogr. v.711 On the kinetics of phase separation in aqueous two-phase systems Salamanca, M. H.;J. C. Merchuk;B. A. Andrews;J. A. Asenjo
  42. Biochem. Eng. J. v.6 Extractive fermentation for improved production of endoglucanase by an intergeneric fusant of Trichoderma ressei/Saccharomyces cerevisiae using aqueous two-phase systems Sinha, J. P.;K. Dey;T. Panda https://doi.org/10.1016/S1369-703X(00)00082-6
  43. Appl. Microb. Biotechnol. v.54 Aqueous two-phase: The system of choice for extractive fermentation Sinha, J. P.;K. Dey;T. Panda https://doi.org/10.1007/s002530000342
  44. J. Chromatogr. v.743 Affinity partitioning of a poly(histidine)-tagged integral membrane protein, cytochrome bo3 ubiquinol oxidase, in a detergent-polymer aqueous two-phase system containing metal-chelating polymer Sivars, U.;J. Abramson;S. iwata;F. Tjerneld https://doi.org/10.1016/S0378-4347(00)00113-4
  45. J. Chromatogr. v.743 Kinetics of phase separation under different process and design parameters in aqueous two-phase systems Solano-Castillo, C;Rito-Palomares, M. https://doi.org/10.1016/S0378-4347(00)00060-8
  46. J. Chromatogr. v.743 Drowning-out srystallisation of sodium sulphate using aqueous two-phase systems Taboada, M. E.;T. A. Graber;J. A. Asenjo;B. A. Andrews https://doi.org/10.1016/S0378-4347(00)00110-9
  47. J. Chromatogr. v.680 Enzyme purification with aqueous two-phase systems: Comparison between systems composed of pure polymers and systems composed of crude polymers Venancio, A.;C. Almeida;J. A. Teixeira https://doi.org/10.1016/0378-4347(95)00419-X
  48. J. Chromatogr. v.680 Aqueous two-phase partition of complex protein feedstock derived from brain tissue homogenates Walker, S. G.;C. J. Dale;A. Lyddiatt https://doi.org/10.1016/0378-4347(95)00452-1
  49. J. Chromatogr. v.711 Aqueous two-phase systems as an alternative process route for the fractionation of small inclusion bodies Walker, S. G.;A. Lyddiatt https://doi.org/10.1016/S0378-4347(97)00604-X
  50. Current Opinion Biotechnol. v.9 Extractive bioconversion in aqueous two-phase systems Zijlstra, G. M.;C. D. de Gooijer;J. Tramper https://doi.org/10.1016/S0958-1669(98)80111-0
  51. Bioseparation v.7 IgG and hybridoma partitioning in aqueous two-phase systems containing a dyeligand Zijlstra, G. M.;M. J. F. Michielsen;C. D. de Gooijer;J. A. van der Pol;J. Tramper https://doi.org/10.1023/A:1008079626929