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AN INVOLUTION ON THE
SHIFTED RIM HOOK TABLEAUX

JAEJIN LEE

ABSTRACT. We construct a sign reversing involution on the shifted
rim hook tableaux with some conditions. Using the Stembridge’s
combinatorial interpretation for Morris’ rule, this involution give a
combinatorial proof of the orthogonality of the first kind for the
spin characters of S,. .

1. Introduction

There has been a recent surge of interest in the projective representa-
tions of symmetric groups and shifted tableaux. Morris [3] constructed a
projective analogue of the Murnaghan—Nakayama character recurrence
and Stembridge [5] found a Frobenius-type characteristic map and an
analogue of the Littlewood—Richardson rule. Sagan [4] and Worley [7]
has developed independently a combinatorial theory of shifted tableaux
parallel to the theory of ordinary tableaux. This theory includes shifted
versions of the Robinson-Schensted-Knuth correspondence, Green’s in-
variants, Knuth relation, and Schiitzenberger’s jeu de taquin.

In [6] White gives a combinatorial proof of the orthogonality of the
first kind for the ordinary characters of S,. His proof is based on the
Murnaghan-Nakayama formula. In this paper we will give a similar kind
of proof for the spin characters of S,, which is based on the Stembridge’s
combinatorial interpretation for Morris’ rule. White described a sign
reversing involution on triples (S,T,0), where S and T are different
rim hook tableaux and ¢ € Sy, and where content(S) = content(7") =
content (o).

The involution he described proceeds as follows. First, a common
“core” ) of S and T is found. That is, if k£ is the smallest value in a rim
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hook which is different in S and T, then Q = S|{1,. . k-1} = Tl{1,.. k—1}-
A key fact is that kg(k) and kp(k) will either overlap (“overlapping
case”) in a rim hook outside @ or will be disjoint (“disjoint case”), but
connected by a rim hook inside ). The involution reverses these two
cases.

Our proof for the spin characters will follow a similar outline. How-
ever, certain new difficulties arise. In addition to the overlapping and
disjoint cases, there is a third case (“double overlapping”). These cases
fall into three groups of two, depending on the parity of certain param-
eters. Consequently, in addition to showing that only these three cases
can occur, they must also be shown to satisfy certain conditions. The in-
volution will then reverse each of the three pairs. Finally, the involution
must also account for the more complicated weights.

In section 2, we outline the definitions and notation used in this paper.
In section 3, we construct a sign reversing involution on the shifted rim
hook tableaux with some conditions.

2. Definitions

In this section we introduce the most basic unit in this paper.

DEFINITION 2.1. A partition X of a nonnegative integer n is a sequence

of nonnegative integers A = (A1, A2, ..., A¢) such that
LAa2>2A2>-2X>0,
2. Ele )\l =n.

We write A - n, or |A\| = n. We say each term \; is a part of A.
The number of nonzero parts is called the length of A and is written
£ = £()\). We sometimes abbreviate the partition A with the notation
171292 . where j; is the number of parts of size i. Sizes which do not
appear are omitted and if j; = 1, then it is not written. Thus, a partition
(5,3,2,2,2,1) I 15 can be written 12335.

NoTATION 2.2. We denote
P, = {p | p is a partition of n }
OP,, = {u € P, | every part of u is odd}
DP, ={p € Py | u has all distinct parts}
DP = {u| pis a partition with all distinct parts}.
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DEFINITION 2.3. For each A\ € DP, a shifted diagram D) of shape A
is defined by

A={G5) €Z|i<j < N+i-1,1<i<N}
And for A, € DP with p C A, a shifted skew diagram D, Ju i defined

as the set-theoretic difference D) \ D},. Figure 2.1 shows D} and D) ,
when A = (9,7,4,2) and p = (5,3,1).

DEFINITION 2.4. A shifted skew diagram 0 is called a single rim hook
if 0 is connected and contains no 2 x 2 block of cells. If § is a single rim
hook, then its head is the upper rightmost cell in 6 and its tail is the
lower leftmost cell in 8. See Figure 2.2.

DEFINITION 2.5. A double rim hook is a shifted skew diagram @
formed by the union of two single rim hooks both of whose tails are
on the main diagonal. If  is a double rim hook, we denote by .A[6]
(resp., a1[f]) the set of diagonals of length two (resp., one). Also let
31[0] (resp., 71[0]) be a single rim hook in @ which starts on the upper
(resp., lower ) of the two main diagonal cells and ends at the head of
a1[f]. The tail of 5,[0] (resp., 11(0]) is called the first tail (resp., second
tail) of . Hence we have the following descriptions for a double rim
hook 6: 8 = A[g] U a1[9] = ﬂl [9] U ,82[9] =7 [9] U ’72[0]

l | ) L¥%7 I

p i
6 A 2 ay B | Bi 7o 7

N

Figure 2.3

Definition 2.5 is illustrated in Figure 2.3.
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We will use the term rim hook to mean a single rim hook or a double
rim hook.

DEFINITION 2.6. A shifted rim hook tableau of shape A € DP and
content p = (p1,...,pm) is defined recursively. If m = 1, a rim hook
with all 1’s and shape A is a shifted rim hook tableau. Suppose P of
shape A has content p = (p1, p2, - - -, Pm) and the cells containing the m’s
form a rim hook inside A. If the removal of the m’s leaves a shifted rim
hook tableau, then P is a shifted rim hook tableau.

DEFINITION 2.7. If 6 is a single rim hook then the rank r(9) is one
less than the number of rows it occupies and the weight w(6) = (—1)"®);
if § is a double rim hook then the rank r(6) is |A[0]|/2 + r(a1[f]) and
the weight w(f) is 2(—1)"®,

The weight of a shifted rim hook tableau P, w(P), is the product of
the weights of its rim hooks.

Let P be a shifted rim hook tableau. We write kp(r) or rh.(P) for a
rim hook of P containing r. Figure 2.4 shows an example of a shifted rim
hook tableau P of shape (4,3,1) and content (5,2,1). Here r(x(1)) =
2, 7(k(2)) =1 and 7(x(3)) = 0. Also w(k(1))} = 2, w(k(2)) = —1 and
w(k(3)) = 1. Hence w(P) =2-(—1)-1=-2.

(1[1]1]2] [1 1[2 I@l tj2| (1f1jt]z2]{1]1]1]2
1]1]2 12 1112 1{112 Df1]2
3 El |3 3] |3
P Pl P
Figure 2.4 Figure 2.5

DEFINITION 2.8. Suppose P is a shifted rim hook tableau. Then we
denote by P! (resp., P») one of the tableaux obtained from P by circling
or not circling the first tail (resp., second tail) of each double rim hook
in P. The P! (resp., P») is called a first (resp., second) tail circled rim
hook tableau. Similarly P} is obtained from P by circling or not circling
the first tail and the second tail of each double rim hook in P and is
called a tail circled rim hook tableau. We use the notation | - | to refer
to the uncircled version; e.g., |Pl| = || = |P}| = P.

We now define a new weight function w’ for first (resp., second) tail
circled rim hook tableaux. If 7 is a rim hook of P! (resp., P,), we define
w' (1) = (=1)"("). The weight w'(P') (resp., w'(P;)) is the product of
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the weights of rim hooks in P! (resp., P;). If P is a shifted rim hook
tableau in Figure 2.4, Figure 2.5 shows first and second tail circled rim
hook tableaux P! and P,, and Figure 2.6 shows tail circled rim hook
tableaux Pj.

HRHAHE FIARE 1]1]1]2 @f1]1]2
1/1]2 1]1]2 mj1]2 @f1]2
3 3 3

3]
Figure 2.6
THEOREM 2.9. Let A € D. Let
A = { P} | P is a shifted rim hook tableau of shape A },
B = { (P, P) | P is a shifted rim hook tableau of shape A }.
Then there is a bijection n from A onto B.

PROOF. See Figure 2.7 for the definition of . Clearly 7 is a bijection

from A onto B. O
[1]1 [1]1] [1]1 (@] 1 @] [1]:
[ 1] 1 [ 1) (1] L1l
P} n(P}) P; n(P3)

1 [1]1] [1]1 (@] 1 @[] [+
@ L @ [el 1]

Bl-

P n(Py) P n(P;)
Figure 2.7

3. The sign reversing involution

In this section we describe a sign reversing involution on a certain
set which proves the orthogonality relation of the first kind for the spin
characters of S,,.

DEFINITION 3.1. A rim hook 7 is called the rim hook inside X if 7y is
contained in A and its removal from A leaves another legal shape. The
shape created by the removal of v is denoted by A —v. If v is disjoint
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from X but its addition to A creates a new shape, then v is a rim hook
outside A and the new shape formed by its addition to A is denoted by
A + . In Figure 3.1, o is the rim hook inside A and 7 is the rim hook
outside A, where A = (7,4,2,1).

EEEEEEE | ]
7 %

N, .
Figure 3.1

It is frequently necessary in discussions involving tableaux and shape
to refer to the directions within the shape. Generally speaking, z will
be SE of y if the row of z is the same as or below the row of y and the
column of z is the same as or to the right of the column of y. Also, z
will be strictly SE of y if z is SE of y but not in the same row or same
column.

Let Sx be the set of permutations on X (if X = {1,2,...,n}, Sx =
Sp). Let o € Sx and write o in cycle form, o = 0102...0,,, where
the cycles o; are written in increasing order of the largest in the cycle.
Recall that content (o) is the sequence p = (p1, p2,. .., pm), Where p; =
|o;| =length of the cycle o;. If 0 € Sx, then let & be a permutation
obtained from ¢ in which each cycle of o is either barred or unbarred.

| I | | l %.

|| % ||
(v, ) _ 1-linked
;/,é | 2//5«% L L L | 7
) 7 77, W7
Z || %% %
3-linked 6-linked

Figure 3.2

If 0 = (42)(8371), & is one of (42)(8371), (42)(8371), (42)(8371) and
(42)(8371).
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DEFINITION 3.2. Let P be a shifted rim hook tableau of content
p=(p1y---yom) I p = (01,-..,p0k),k < m, then the restriction of P
to p', denoted by P|,, is the shifted rim hook tableau obtained from P
by removing all entries greater than k. If P and @ are shifted rim hook
tableaux, let PN (Q denote the largest shifted rim hook tableau R which
has the property that R = P|, = Q|,.

DEFINITION 3.3. Let v,m € DP, be shifted shapes and v # n. (v, )
is called k-linked if there are k-rim hooks § and ¢ inside v and 7 re-
spectively such that v — § = m — e. For example, if v = (4,3,2) and
m = (5,3,1), then (v, 7) is 1-linked, 3-linked and 6-linked. This example
is illustrated in Figure 3.2.

From Definition 3.3 we have the following properties. See [1] for
proofs.

PROPOSITION 3.4. Let v,m € DP, be shifted shapes and v < 7.
Then

1. (v, m) is k-linked for some k if and only if v/(v N =) is a rim hook
and w/(v N 7) is a single rim hook.

2. If (v,n) is k-linked, then there is only one pair &, ¢ of rim hooks
inside v and 7 respectively such that v—§ = m—e and |0| = |e| = k.

3. If v/(vN ) is a rim hook inside v and 7/(v N =) is a single rim
hook inside m with |v/(v N )| = |n/(v N7)| =k, then (v,n) is k-
linked, [-linked and m-linked for some positive integers [, m with
kE<l<m.
Furthermore, (v, ) is not i-linked except for i = k,l,m.

NOTATION 3.5. If (v, 7) is k-linked for some k, let B be the rim hook
inside N connecting v/(v N7) and 7/(v N 7) and let §; , €; be the rim
hooks inside v and , respectively, such that v — §; = 7 — ¢;, |6;| = |&|
for i = 1,2,3 and ]61| < |52| < |53|

DEFINITION 3.6. Let (v,m) be k-linked for some k. We say (v,7) is
in Class EE if both |v/(v N7)| and |B| are even. We say (v,7) is in
Class EO if [v/(vN )| is even and |B| is odd. Class OF and Class 00

are defined in a similar way.

Proposition 3.4 and Definition 3.6 give us the following properties.
See [1].

ProrosiTiON 3.7. Let v, m € DP, withv < 7. Let (v, n) be k-linked
for some k. Then we have
1. If (v, ) is in Class EE, then |§;| is even for each 1.
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2. If (v, w) is in Class OF, then |61| and |62| are odd but |d3| is even.
3. If (v, m) is in Class EO, then |d2| and |63| are odd but |1] is even.
4. If (v, ) is in Class OO, then |61| and |d3| are odd but |d| is even.

Note that either each |d;| is even or only one of the |§;|’s is even.

PROPOSITION 3.8. Let v,m € DP, with v < w. Let (v,m) be a k-
linked for some k and C = 83 — 6o = €3 — €3. Then

rank (82) = rank (61) + rank (B) + 1,

rank (eg) = rank (e1) + rank (B),

rank (63) = rank (62) + |C|—rank (C) —1, and
rank (e3) = rank (ez) + rank (C).

Now let A, € DP,, and V), denote the set of all triples (P1,Qs,5),
where P is a shifted rim hook tableau of shape A, @ is a shifted rim
hook tableau of shape u , o € S,, with type(o) € OP,, and content(P) =
content(Q) = content (o). Let

+, ={(PQ2,7) € Uy, | w'(P)uw'(Q2) =1},
,\u:{(PvQ2aU)E\I’/\qu( Duw'(@2) = -1}
Then we have the following theorem.

THEOREM 3.9. Let A\, u € DP,, with A\ # p. Then there is a bijection
between \Ilj\r“ and \IJ;M.

PrROOF.  Let (P',Q, ,5) € ¥,,. Assume we have content(P) =
p=(p1,p2,--,Pm)- Let @ = 0102... 0, denote the cycle decomposition
with each cycle barred or unbarred. Thus |o;| = p;. Suppose P N Q has
shape v and content p’ = (p1,p2,...,p%), k < m. Let o/ = 0102...0%
and let P N Q2 = 07 (P (p1 parn) @2l(o1,p9,...00))- Finally suppose
P (o1 p2,....pes1) Das shape v and Qal(y, ps,....e,,) has shape 7. Then
(v,7) is |pr+1/|-linked. Assume v < 7.

Call (P, Q5 ,7) disjoint if rhy1(PY)N7rhry1(Q2) = 0. And we call
(P',Q2 ,) overlapping if rhyy1(P') N 7hyy1(Q2) = B. If rhy 1 (PH) N
rhk+1(Q2) properly contains B , we call (P!,Q2 ,7) double overlapping.
Since (v, ) is |pg+1[-linked, (v,7) can only belong to Class OE, Class
EO or Class OO. We therefore have six cases:

1. (v,m) is in Class OE and (P1 Q2 ,0) is disjoint.

2. (v,) is in Class OE and (P!, Q: ,7) is overlapping.

3. (v,7) is in Class EO and (P!, Qs ,7) is overlapping.

4. (v,m) is in Class EO and (P!, Q> ,7) is double overlapping.
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5. (v,7) is in Class OO and (P!, Q2 ,7) is disjoint.
6. (v,m) is in Class OO and (P!, Q- ,7) is double overlapping.
The involution will pair off cases 1 and 2, 3 and 4, and 5 and 6. That

is, the result of the involution on a member of case 1 will be a member
of case 2.

We will describe the involution algorithmically. The algorithm de-
scription is similar in all six cases, so we will describe the algorithm
once, with case-by-case modifications where necessary. In particular,
cases 1, 3 and 5 are very similar. We call these three cases expanding.
Also, cases 2, 4 and 6 are similar and we call these contracting. See [2]
for the definitions of ¢, 7y and T'y.

Step 1. Construct a permutation tableau 7. In all cases, use the
bijection ¢ to construct T' € my(o1 U+ Uoy) from (P1N Q2 ,01...0%).

Step 2. Determine section of cycle to add or delete. Let v = B if
(v,m) is in Class OE. Let v = d3 — §; = €3 — €2 if (v, 7) is in Class EO.
Let v = 63 — 81 = €3 — €1 if (v, 7) is in Class OO. Note that v is a rim
hook inside 1 in the expanding cases and is a rim hook outside v in the

contracting cases. Let r = || and ¢ = pgy1. Let |ops1| = (a1...an)
where a, is the largest entry in |ok41|. Finally, in the expanding cases,
let by,...,b, be the entries in T in ~, read from tail to head (or from

tail to head in f[y] and then from tail to head in S2[7], if 7y is a double
rim hook). In the contracting cases, let [ogx4+1]| = (@1...at—rb1 ... by).

Step 3. Modify T to form a new permutation tableau 7”. In the
expanding cases, 7" is T with y removed. In the contracting cases, T" is
T with v added and by,...,b, inserted into « from tail to head (filling
Bi[y] from tail to head, then filling (a[y] from tail to head if v is a
double rim hook). v in 7”7 will have circles in the same positions that v
has circles in P! or Q.

Step 4. Construct a rim hook tableau R and permutation 7 from
T', using ¢~'. In the expanding cases, (R,7) € Ly_,(c1 U -+ U o) —
{b1,...,b,}), while in the contracting cases, (R,7) € T'yyy(01U---Uo,U
{b1,...,b.}). Let 8 = (01,...,0;) be the content of R and 7.

Step 5. Construct P'* and Q) as follows:

R=1n(P"g,Q5lo),
rhisi(P'Y) = rhip(PY)  for i > 1,
Thl+i(Q,2) = Thk+i(Q2) for i > 1.
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In the expanding cases,
rhip (P = rhg 1 (PY) + 7,
rhi41(Q%) = rhes1(Q2) + 1,

while in the contracting cases,
rhip1(P') = rhgp(PY) =7,
rhi11(Q%) = Thi41(Q2) — 7.

Step 6. Determine circles. In the expanding cases, rh;4q (P’ 1) will have a
circle on its first tail if either 7k, (P') has a circle on its first tail or, in
expanding Cases EO or OO, T has a circle on the cell which corresponds
to the first tail of rhy 1 (P'!). Also rhyy1(Q)) will have a circle on its
second tail if 7" has a circle on the cell which corresponds to the second
tail of rhy11(Q%). In the contracting cases, rhy1(P'") will have a circle
on its first tail « if rhg,1(P?) has a circle on its first tail a and, in the
contracting Cases EO or OO, the circled cell « is not in ~.

Step 7. Construct the new permutation o’
In the expanding cases,

e T-(a1...ath1...by) - Ogt2...0m if 041 has no bar on it,
T-(a1...a¢by...by) Opy2...0m if o041 has a bar on it.

In the contracting cases,

77 — T-(a1...a4—y)  Ogs2...0m if ok41 has no bar on it,
7-(a1...a4—y) " Ogyg...0m if oxy1 has a bar on it.

Note that Proposition 3.8 implies that
W' (rhip1(P) + 1)w' (rhi+1(Q2) +7) = —w' (rhip1 (P (rhrs1(Q2))
in the expanding cases and
W (rhip1(P) — 1w (rhi11(Q2) — ) = —w' (rhipa (PY)w' (rhes1(Q2))
in the contracting cases. Therefore, we have
W (P)w'(Q)) = —w/(Pw'(Q2).
|

Figure 3.3-Figure 3.4 show us examples of the involution described
in the above proof for each case. Here we use the alphabet 1 < --- <
9 < a < b<c<d InFigure 3.3 disjoint (P!, Q2 ,7) is given. Note that
(v,m) is in Class OE, where v = shape(P!) and 7 = shape(Q3). Next
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(P* N Q2,01 ...0%) is illustrated. Then T is constructed using ¢ (Step
1). « is constructed using v = ez — €1 = d2 — 1 (Step 2) and T” is formed

11214 |4]4 1214|446 6|6
35186 3|9
(P, Q,,5)= |6]6 (3)(3)(5)(862)(9) (aT1)
1 4|4
P'NQ;= |3|5 (3)(D(5)(862)(9)
4|3|6[8|2 %
T= &|° \7
4]13|6 1124
T'= |@|9 (R,7) = [3]s |B)DE)6)O)
1l2|4]6]86 1214|666 ]|6]6
3|5le 3|5
(P",Qy0")= [B]6 (3)(4)(5)(6)(9)(aT182)
Figure 3.3

by removing the entries in v from 7' (Step 3). The (R, 7) is constructed
using ¢~! on T’ (Step 4). Finally (P’ 1 Q%,0") is built from (R,7), 041,
the entries in +y, and the rest of P1,Q, and & (Steps 5 and 6).

In Figure 3.4, an overlapping (P!,Q2 ,7) is given. Here (v, ) is
in Class OE, where v = shape(P!) and ©# = shape(Q). The (P! N
Q2,01 ...0%) is illustrated and 7T is formed using ¢ (Step 1). Next v
is constructed (Step 2). T’ is formed by inserting part of ox41 onto
T (Step 3). (R,7) is constructed from 7T’ using ¢! (Step 4). Finally
(P, Q%,0") can be constructed by putting back the rest of o441 and
the rest of P!,Q2 and & (Steps 5 and 6). The other cases are shown in
a similar way.
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Together with the main theorem in [2], Theorem 3.9 gives us the
following identity.

@1 j2|afafa|[|1[1]|2]|ala]|a]|a]|4]|4
1134 @
@4
(P,Qz,9) = | 4 (543)(8)(b)(c791a62)
D1
PPnQ.=|@]3 (543)(8)(b)
@[s|s 777
T = @ s % \7
@|s|8]ale]2 1213|444
T=|8[3]|1] ®RP= 5 | (3)(5)(8)(a62)(b31)
1|2 4alalafll1]2]3 4(4|le|6]|6
S5|5is 5195
| @]s
(P, Q5,0 = e (4)(5)(8)(a62)(31)(c79)

Figure 3.4

THEOREM 3.10. Let A ,u € DPF,,. Then
S 24Pe Dy PYw(Q) = 85,2 Vnl,

where the sum is over triples (P, Q, 0 ), with P a shifted rim hook tableau
of shape A\, Q a shifted rim hook tableau of shape y and o € Sy, which
satisfy type(o) € OP,, content(P)=content(Q)=content(c).

DEFINITION 3.11. For n > 1 let S, be the group generated by
t1,t2,..., tn_1, —1 subject to relations

et?=—1fori=12,...,n—1,
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L] titi.ﬂti = ti+1t¢ti+1 for ¢ = 1, 2, vy — 2,
o tit;=—tjt;for [i—j|>1(,5=1,2,...,n—1).

If we use the recurrence formula for the irreducible spin characters of
the S, we obtain the following theorem from Theorem 3.10.

THEOREM 3.12. (Orthogonality formula of the first kind)
Let ¢ and v be irreducible spin characters of S,,. Then

_1y _ J2n! ifp=1,
Ugncp(d)w(a )—{0 ot
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