UNIFORM STRUCTURES IN BCI-ALGEBRAS

DALL SUN YOON AND HEE SIK KIM*

ABSTRACT. In this note we discuss the uniformity in BCI-algebras using Zhang's congruence relation.

1. Introduction

K. Iséki ([4]) discussed the quasi-uniformity on BCK-algebras, and R. A. Alo and E. Y. Deeba ([1]) studied the uniformity in BCK-algebras, and Y. B. Jun and E. H. Roh ([6]) discussed the uniformity in BCK-algebras by using the concept of dual ideals. Y. B. Jun and H. S. Kim ([5]) discussed the uniformity in positive implicative algebras. In this note we discuss the uniformity in BCI-algebras using Zhang's congruence relation.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, *, 0) of type (2, 0) satisfying the following axioms for all $x, y, z \in X$:

- (i) ((x*y)*(x*z))*(z*y) = 0,
- (ii) (x * (x * y)) * y = 0,
- (iii) x * x = 0,
- (iv) x * y = 0 and y * x = 0 imply x = y.

We can define a partial ordering \leq on X by $x \leq y$ if and only if x * y = 0. In any BCI-algebra X, the following hold:

- (1) x * 0 = x,
- (2) (x * y) * z = (x * z) * y,

Received October 27, 2000.

2000 Mathematics Subject Classification: 06F35.

Key words and phrases: uniformity, BCI-algebra.

* This work was supported by Hanyang University Research Fund, 2000.

- (3) $x \le y$ imply $x * z \le y * z$ and $z * y \le z * x$,
- (4) $(x*z)*(y*z) \le x*y$

for any $x, y, z \in X$.

In what follows X and Y would mean BCI-algebras unless otherwise specified.

An ideal of X is a subset A of X containing 0 such that if $x * y \in A$ and $y \in A$ then $x \in A$. It is well known that if A is an ideal of X and $y \in A$, $x \le y$, then $x \in A$. A map $f: X \to Y$ of BCI-algebras is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$. For any elements x and y in X, let us write $x * y^n$ for $(\cdots ((x * y) * y) * \cdots) * y$ where y occurs n times.

PROPOSITION 2.1 ([3]). For any $x, y \in X$ and for any positive integer n, we have

$$0 * (x * y)^n = (0 * x^n) * (0 * y^n).$$

Let A be an ideal of X. For every natural number n, we define a relation \sim on X as follows:

$$x \sim_A y$$
 if and only if $0 * (x * y)^n \in A$ and $0 * (y * x)^n \in A$.

Then \sim_A is an equivalence relation on X (see [9, Theorem 1]).

THEOREM 2.2 ([2]). If
$$x \sim_A u$$
 and $y \sim_A v$, then $x * y \sim_A u * v$.

THEOREM 2.3 ([7]). Let X be a BCK/BCI-algebra and let A be a non-empty subset of X. Then the ideal (A] generated by the set A is $\{x \in X \mid (\cdots ((x*a_1)*a_2)*\cdots)*a_n = 0 \text{ for some } a_1, \cdots, a_n \in A\}.$

3. Uniformity in BCI-algebras

Let X be a non-empty set and let U and V be any subsets of $X \times X$. Define

$$\begin{split} U \circ V &= \{ (x,y) \in X \times X \mid \text{ for some } z \in X, (x,z) \in U \text{ and } (z,y) \in V \}, \\ U^{-1} &= \{ (x,y) \in X \times X \mid (y,x) \in U \}, \\ \Delta &= \{ (x,x) \in X \times X \mid x \in X \}. \end{split}$$

DEFINITION 3.1 ([8]). By a *uniformity* on X we shall mean a non-empty collection $\mathcal K$ of subsets of $X\times X$ which satisfies the following conditions:

- $(U_1) \triangle \subseteq U$ for any $U \in \mathcal{K}$,
- (U_2) if $U \in \mathcal{K}$, then $U^{-1} \in \mathcal{K}$,
- (U_3) if $U \in \mathcal{K}$, then there exists a $V \in \mathcal{K}$ such that $V \circ V \subseteq U$,
- (U_4) if $U, V \in \mathcal{K}$, then $U \cap V \in \mathcal{K}$,
- (U_5) if $U \in \mathcal{K}$ and $U \subseteq V \subseteq A \times A$, then $V \in \mathcal{K}$.

The pair (X, \mathcal{K}) is called a uniform structure.

THEOREM 3.2. Let X be a BCI-algebra and let A be an ideal of X. If we define $U_A := \{(x,y) \in X \times X \mid 0*(x*y)^n \in A \text{ and } 0*(y*x)^n \in A \text{ for any positive integer } n\}$ and let

$$\mathcal{K}^* = \{U_A \mid A \text{ is an ideal of } X\}.$$

Then K^* satisfies the conditions $(U_1) \sim (U_4)$.

PROOF. (U_1) . If $(x,x) \in A$, then $(x,x) \in U_A$ since $0*(x*x)^n = 0 \in A$ for any positive integer n. Hence $A \subseteq U_A$ for any $U_A \in \mathcal{K}^*$.

 (U_2) . For any $U_A \in \mathcal{K}^*$,

$$(x,y) \in U_A \iff 0 * (x * y)^n \in A \text{ and } 0 * (y * x)^n \in A$$
for any positive integer n
 $\iff y \sim_A x$
 $\iff (y,x) \in U_A$
 $\iff (x,y) \in U_A^{-1}$.

Hence $U_A^{-1} = U_A \in \mathcal{K}^*$.

 (U_3) . For any $U_A \in \mathcal{K}^*$, let $\mathcal{B} := \{A_\alpha \mid A_\alpha : \text{ an ideal of } X \text{ such that } A_\alpha \subseteq A\}$. Then \mathcal{B} is non-empty, since $A \in \mathcal{B}$. If we define J the ideal of X generated by the set $\cup \mathcal{B}$ i.e., $J = (\cup \mathcal{B}]$, then $U_J \in \mathcal{K}^*$. We claim that $U_J \circ U_J \subseteq U_A$. If $(x,y) \in U_J \circ U_J$ then there exists $z \in X$ such that $(x,z),(z,y) \in U_J$. This means that $x \sim_J z$ and $z \sim_J y$. Since \sim_J is an equivalence relation, we have $x \sim_J y$, i.e., $0 * (x * y)^n \in J$ and $0 * (y * x)^n \in J$ for any positive integer n. Since $\cup \mathcal{B} \subseteq A, J \subseteq A$. Hence $0 * (x * y)^n, 0 * (y * x)^n \in A$ for any positive integer n, i.e., $(x,y) \in U_A$.

 (U_4) . For any U_I and U_J in \mathcal{K}^* , we claim that $U_I \cap U_J = U_{I \cap J}$.

$$(x,y) \in U_I \cap U_J \iff (x,y) \in U_I, (x,y) \in U_J$$

 $\iff 0 * (x * y)^n, 0 * (y * x)^n \in I \cap J$
for any positive integer n
 $\iff x \sim_{I \cap J} y$
 $\iff (x,y) \in U_{I \cap J}.$

Since $I \cap J$ is an ideal of X, $U_I \cap U_J = U_{I \cap J} \in \mathcal{K}^*$. This proves the theorem.

THEOREM 3.3. Let $\mathcal{K} := \{U \subseteq X \times X \mid U_A \subseteq U \text{ for some } U_A \in \mathcal{K}^*\}$. Then \mathcal{K} satisfies a uniformity on X and hence the pair (X, \mathcal{K}) is a uniform structure.

PROOF. By applying Theorem 3.2 we can show that \mathcal{K} satisfies the conditions $(U_1) \sim (U_4)$. Let $U \in \mathcal{K}$ and $U \subseteq V \subseteq X \times X$. Then there exists a $U_A \subseteq U \subseteq V$, which means that $V \in \mathcal{K}$. This proves the theorem.

Given a $x \in A$ and $U \in \mathcal{K}$, we define

$$U[x] := \{ y \in X \mid (x, y) \in U \}.$$

THEOREM 3.4. The collection $\mathcal{U}_x := \{U[x] \mid U \in \mathcal{K}\}, x \in X$, forms a neighborhood base at x, making X a topological space.

PROOF. Note that $x \in U[x]$ for each $x \in X$. Since $U_1[x] \cap U_2[x] = (U_1 \cap U_2)[x]$, the intersection of neighborhoods is also a neighborhood. Finally, if $U[x] \in \mathcal{U}_x$ then by (U_3) there exists a $V \in \mathcal{K}$ such that $V \circ V \subseteq U$. Hence for any $y \in V[x]$, $V[y] \subseteq U[x]$, proving the theorem.

References

- [1] R. A. Alo and E. Y. Deeba, A note on uniformities of a BCK-algebra, Math. Japo. 30 (1985), 237–240.
- [2] S. M. Hong and Y. B. Jun, Quotient BCI-algebras via fuzzy ideals, Far East J. Math. Sci. 4 (1996), no. 3, 343-351.

- [3] W. P. Huang, Nil-radical in BCI-algebras, Math. Japo. 37 (1992), 363-366.
- [4] K. Iséki, On a quasi-uniformity on BCK-algebras, Math. Seminar Notes (1976), 225–226.
- [5] Y. B. Jun and H. S. Kim, *Uniform structures in positive implicative algebras*, International Mathematical Journal 2 (2002), 215–218.
- [6] Y. B. Jun and E. H. Roh, On uniformities of BCK-algebras, Comm. Korean Math. Soc. 10 (1995), 11–14.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
- [8] S. Willard, General Topology, Addison-Wesley Pub. Co., New York, 1970.
- F. L. Zhang, A class of quotient algebras in BCI-algebras, Selected papers on BCK- and BCI-algebras (in P. R. China) 1 (1992), 89-90.

Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: dsyun@hanyang.ac.kr
heekim@hanyang.ac.kr