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ON THE HOMOLOGY OF SCHUR COMPLEXES
Eun J. CHOI, Young H. KiM, I H. KYOUNG, AND SEUNG J. WON

ABSTRACT. We give an upper bound for the degrees of the non-
vanishing homology modules of the Schur complex Ly, ¢ in terms
of the depths of the determinantal ideals of ¢. Using this fact, we
obtain the acyclic theorem for L, ¢ and the information concerning
the support of the homology modules of L) ,,¢.

1. Introduction

Let R be a Noetherian ring with unity. Let m, n be positive integers
and let us denote by S the polynomial ring over R with mn variables
x;; fori=1,-.-,mand j=1, .-, n. Consider the m x n matrix (z;;)
with entries in S. We call such a matrix a generic matrix. For a positive
integer ¢ such that 1 < ¢ < min(m,n), I; is defined to be the ideal of
S generated by all ¢t-minors of (z;;). We call such ideals determinantal
ideals. The rings S/I; have been the classical objects of intensive study.
For instance, by the first and the second fundamental theorems, it is
well known [5, 15] that when an orthogonal group acts on a certain
polynomial ring in a certain way, the ring of invariants is described in
the form of S/I;. Furthermore, M. Hochster and J. A. Eagon proved in
[6] that I; is perfect (i.e., pdsS/I; = gradel; = (m —t + 1)(n — t + 1)).
For many years there has been considerable interest in finding a minimal
free resolution of S/I;s.

It is well known [10, 14| that, in order to show the existence of min-
imal free resolutions of S/I;, we have only to prove that Betti numbers
are independent of the characteristic of the coefficient field. In 1978,
Lascoux gave in [11] an explicit description of minimal free resolution
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of S/I; for any m, n and t, when R contains the field of rational num-
bers Q, using the classical representation theory of general linear groups.
In fact, all underlying modules of Lascoux complexes give polynomial
representations of general linear groups [13]. But over an arbitrary com-
mutative ring R, the existence of minimal free resolutions is not known
in general. If ¢ = 1 then the Koszul complex gives us such a reso-
lution. If ¢ = min(m,n), such resolutions were constructed by Eagon
and Northcott in [7]. In 1979, Buchsbaum gave in (3] the new con-
struction of the Eagon-Northcott complex using multilinear algebra. If
t = min(m,n) — 1, then Akin, Buchsbaum and Weyman constructed a
minimal free resolution of S/I; over Z using the characteristic free rep-
resentation theory of general linear groups in [1]. If ¢ = min(m,n) — 2,
then Hashimoto proved in [9] the existence of minimal free resolutions
of S/I;. On the other hand, Hashimoto proved in [8] that there is no
minimal free resolution of S/I; over Z in the case 2 < ¢ < min(m,n) —3.
Hence the construction of the minimal free resolution of S/I; over Z is
based on the characteristic free representation theory of general linear
groups. But Schur functors are fundamental objects in the characteristic
free representation theory of general linear groups and Schur complexes
are natural generalization of Schur functors. Therefore Schur complexes
play central roles in the resolution of the determinantal ideal. This forces
us to further study Schur complexes.

In this paper, we gave an upper bound for the degrees of the nonva-
nishing homology modules of the Schur complex Lj,,¢ in terms of the
depths of the determinantal ideals of ¢. Now we describe the contents
of this paper. In Chapter 2, we review some basic facts on characteris-
tic free representation theory of general linear groups, including Schur
functors and Schur complexes. Although Schur complex is defined for
any finite free complex in the characteristic zero case, it is defined only
for a morphism of finite free complex of length one in the characteris-
tic free case. In Chapter 3, we prove an upper bound for the degrees
of the nonvanishing homology modules of the Schur complex L) ,,¢ by
induction on rank of G. Using this fact, we obtain the acyclic theorem
for Ly¢ and the information concerning the support of the homology
modules of Ly /,.¢.

2. Preliminaries

This chapter is devoted to introducing the definitions and the basic
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facts on Schur complex. Therefore all proofs are omitted. As for the
proofs of Theorems, we refer to Akin, Buchsbaum, and Weyman [2].
Throughout this chapter, R is a commutative ring and ¢ : G — .F is
an R-module homomorphism between free R-modules of rank n and m,
respectively. We will denote by N the set of natural numbers and by
N the set of sequence of elements of N of finite support.

DEFINITION 2.1. A partition is an element A = (A1, Ag, ---) of N*°
such that A\; > A > --- . The weight of partition ), denoted by |}|, is
the sum > A;. If [A| = n, A is said to be a partition of n. The number
of nonzero terms of A is called the length of A\. To each partition A of
weight n, we associate its transpose A= (5\1, A2y v, S\t) where \; is
the number of integers A; such that \; > k. If 4 = (1, po, ---) is also
a partition, we will say that y is a sub-partition of A, or that y C A, if
i < A; for all 4.

DEFINITION 2.2. Let A = (A, -+, As), p = (41, -+, ps) be par-
titions such that ¢ C X. If F' is a finite free R-module then we define
SxjuFs AajuF, Dy, F as follows :

SajuF =8\~ F Q- ®85x,-p,F,
/\)\/,u F = /\’\1—“1F R ® /\)‘s_llsF,
Dy/yF =Dy, F®---® Dy, F.

Let A = (X, ”'1)\3)’ = (1, ---, us) be partitions such that p C A

Let A = (A, -0y At)y b= (fi1, -+, fir) be their transposes. Let (oy;)
be the s x t matrix defined by

1 ifp+1<55 N
Q5 = .
0 otherwise.

We define the map d/,.(F) : Ay/F' — S5, F to be the composition

A/\I—Hl F® e ® /\/\s"ﬂsF
__>(/\a11F®...®/\a1tF)®...®(/\ale®...®/\astF)
_—)(SallF®"'®Sa1tF)®"'®(Sale®"'®SastF)
-—_>(SOL11F®"'®S<131F)®"'®(Sa1tF®"'®SastF)

F---®8; _;F

S5 Ap—iit

A1—in
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where the first map is the tensor product of the diagonalization maps
App 2 NNTHE — (A F ® - @ A*tF) (1 = 1,---,s), the second
map -is the tensor product of the canonical isomorphisms A% F —
Sai; F (aij = 0 or 1), the third map is the tensor product of the com-
mutation maps, and the fourth map is multiplication. Similarly, we
define the map dlA/u(F) : Dy — Ay F

DEFINITION 2.3. Im(dy,,(F)) (resp. Im(d) /M(F))) is denoted by
Ly, F (vesp. Ky, F). Ly, (resp. Ky, ) is called Schur (resp. coSchur)
functor with respect to the skew shape \/pu.

Note that if R=Q, then K/, F is isomorphic to L;\/ﬂF as a GL(F)-
module, and is irreducible if p = (0).

THEOREM 2.4 [2]. (The Standard Basis Theorem for Schur Functor)
Let A = (A1,--+,As), 4= (p1, -+, ps) be partitions such that u C A,
and let F be a free modules with ordered basis X = {z1, -+ ,zm}.
Then {d);,(X7)|T is a standard tableau in Taby,,(X)} is a free basis
for Ly, F, and the map 0),, : E,\/MF — Ly, F is an isomorphism.
Hence Ly, F is universally free.

The definition of Schur complex is quite similar to that of Schur func-
tor. Given ¢ € Hom(G, F') we denote by c4 the element of F® G* corre-
sponding to ¢ under the canonical isomorphism Homg(G, F) & F® G*.

DEFINITION 2.5. (1) The symmetric algebra S¢ of the morphism ¢
is the R-bialgebra SF ® AG formed by taking the usual tensor product
of the R-bialgebras SF and AG. We let mgsy : Sp ® S — S¢p, Agy :
S¢p — SPp®RS¢, and Ty : SpR@S5¢p — Sp®S¢ denote the multiplication,
the comultiplication, and the commutation map of the R-bialgebra S¢,
respectively.

o0

(2) We put a complex structure on S¢ as follows: let (S¢); = Z

i=0
S:F ® A7 G be the j-th degree of the complex and we let dgy : (S@); —
(S¢);—1 be the R-map given by the action of ¢, € SFRAG* on SFRAG.

LEMMA 2.6. mgg,Nge,Tse are all compatible with the differential
Os¢.

DEFINITION 2.7. Si¢ is the subcomplex of S¢ given by

0—>/\kG—>F®/\k_1G—>---—>Sk_jF®/\jG—>--~—>SkF—>O
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where the j-th degree component (Sk@); is Sk—;F ® NG.

Note that Sy¢ is the complex 0 — R — 0 with (Sop)o = R. If ¢ is the
map 0 — F then Si¢ is the complex 0 — S, F' — 0 where (Sx¢)o = Sp.F
and if ¢ is the map G — 0 then S;¢ is the complex 0 — AFG — 0 where
(Skd)x = NFG.

DEFINITION 2.8. (1) The exterior algebra A¢ of the morphism ¢ is
the R-bialgebra AFQDG formed by taking the antisymmetric tensor
product of the R-bialgebras AF and DG. We let mag : Ap @ N —
Np, Dpg i N — AP Q AP, and Thy : AP @ Ap — AP @ A¢ denote the
multiplication, the comultiplication, and the commutation map of the
R-bialgebra A¢ respectively.

(2) We put a complex structure on A¢ as follows : let (Ag); = Z
=0

A'F ®@D;G be the j-th degree component of the complex and 4 :
(A$); — (A¢);—1 be the R-map given by the action of ¢, € AFQSG*
on AF® DG.

LEMMA 2.9. mag,Dag, The are all compatible with the differential
Ong-

DEFINITION 2.10. A¥¢ is the subcomplex of A¢ given by

0—- DG - F@®Dy 1G— - > AN ITFQD;G— - — AFF -0

where the j-th degree component (A*¢); is A*IF ® D,G.

Note that A°¢ is the complex 0 — R — 0 with (A°@)g = R. If ¢ is the
map 0 — F then AF¢ is the complex 0 — A*F — 0 where (AF¢)g = AFF
and if ¢ is the map G — 0 then A*¢ is the complex 0 — DG — 0
where (A*¢)r = DiG. It is easy to see that A¢ = Z Ao, 8¢ = Z Sk

k>0 k>0
as direct sums of complexes.

DEFINITION 2.11. Let A = (Ay,--+ , As), = (u1,--- ,us) be parti-
tions such that u C A. We define S ,,¢ and Ay,,¢ as follows:
S,\/M(ZS = S)«l —M1¢ & S)\s—us¢7
Maju®=N1THG @ @ ANeTheg,

Let A =~(/\1, ey As)y b= (p1, -+ -, ps) be partitions such that p C .
Let A= (A1, -+, At), 8 = (fia, -+, fiz) be their transposes. Let ()
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be the s x t matrix defined by

I fp+1<i<N
Q5 = .
0 otherwise.

We define the Schur map dy /., (¢) : Ax/u® — S5/, to be the compo-
sition
AN THL PR - ®/\>\s—us¢
_,(/\0‘11¢® e ® Aa1t¢) R (/\as1¢® e ® Aast¢)
—*(Sau(ﬁ@ o ® Sa1t¢) ®--® (Sasl¢® o ® Sast¢)
— (50,0 Q@ ®50,0) @ ® (50, 6@+ ® Sa,,P)
—>S:\1__~ ¢®®S" ¢a

1 Ar— bt

where the first map is the tensor product of the maps Apg4 : A*Hip —
(A1 ¢®---QA*tgp) (i =1, ---, s), the second map is the tensor product
of the canonical isomorphisms A%i¢ — Sy, ¢ (045 =0 or 1), the third
map is the tensor product of the commutation maps, and the fourth
map is multiplication in the algebra ®'S¢ =S¢ ® --- @ S¢.

DEFINITION 2.12. Im(d,,,(®)) is denoted by L, ¢. Ly,,¢ is called
the Schur complex on the morphism ¢.

REMARK 2.13. (1) If G =0 then L,,,¢ = L)/, F in degree zero.
(2) If F =0 then L,,,¢ = K ,,G in degree || — |u|.
(3) If A= (A1) and p =0 then Ly,,¢ = A*¢.
(4) fAx=(1,---,1) and p =0 then Ly, ¢ = S;¢.

——
q

THEOREM 2.14 [2]. (The Standard Basis Theorem for Schur Com-
plexes) Let A = (Ay, ---, As), = (1, -+, ps) be partitions such that
i € A and let ¢ : G — F be a map of free modules. Let Y={y,
ooy Yn}, X={z1, --+, T} be bases for G and F, and let S =Y UX
be totally ordered so that the orders of X and Y are preserved. Then
{dx/u(Z7)|T is a standard tableau mod Y in Tab,,,(S)} is a free basis
for Ly;,¢, and the map 0)/, : EA/M¢ — Ly;,,¢ is an isomorphism.
Hence L ,,¢ is universally free.

COROLLARY 2.15 [2]. Let ¢ : G — F be a split injection. Then
Ly /.9 is acyclic and Ho(L )/, $) = Ly /. (cokerg).

COROLLARY 2.16 [2]|. If¢ = ¢1 ® ¢2 and ¢, is an isomorphism, then
Ly,.¢ is homotopically equivalent to Ly, ¢2.
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3. On the homology of L,,,¢

In this chapter, R is a commutative Noetherian ring with unity. Let
¢ : G — F be an R-module homomorphism between free R-modules of
ranks n and m, respectively, and let A = (A1, Az, -++), u = (p1, p2,
.-+ ) be partitions with g C A. In this chapter, we give an upper bound
for the degrees of the nonvanishing homology modules of the complex
Ly,.¢ in terms of the depths of the determinantal ideals of ¢.

DEFINITION 3.1. Let A = (A1, Ao, --+), = (p1, pa, -+ ) be parti-
tions with u C A\. We define, for j =1, --- ,

A1
kj =D wi,
=1
- — { Ni—p) =g N>
’ 0 otherwise.

For example, let A = (5,4,3,2,1) and p = (2,1). Then ky =7, k3 = 3,
k; = 0 for all ¢ (¢ > 3). Note that if u = (0), then k,_1 — k, = \p.

THEOREM 3.2. Let A = (A, A9, --+) and p = (1, Mo, -+-) be
partitions with . C X and let ty;, = (t1, t2, ---) be a sequence of
nonnegative integers satisfying

tj - tj_l < kj_l — kj

forj=2,--- . If ¢ : G — F is an R-module homomorphism between
free R-modules G and F with n = rankG < rank F = m and

deptthqS > tn—j-f—l
forj=1,2,---,n, then
H.(Ly/u9) =0

whenever x > (|A| — |u| — kn) — t,.

PROOF. We proceed by induction on rankG = n. If n = 0, then
clearly Ly, ¢ is acyclic. Supposen > 1. By the Standard Basis Theorem
for Schur Complexes, the length of Ly, ¢ is at most |A| — |u| — k,. By
the acyclicity lemma [4], it is sufficient to prove that the homology of the
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localized complex Ly,,¢ ® R, vanishes in degree > (|| — |u| — kn) — t5,
at each prime ideal P satisfying depth PR, < t,. But such a prime P
cannot contain the ideal I;¢ by the assumptions on depth I;¢. Hence
I ¢ blows up in R,, and over R, we have ¢ = ¢’ @& 1, where ¢’ is a
homomorphism between a free R,-module F' with dimF’'= m — 1 and
a free Ry,-module G" with dimG’ = n — 1. If we prove that the depth
conditions are preserved under localization, the conclusion will follow
from the induction hypothesis applied to ¢'. Observe that
depth I;¢' = depth ;11 ¢,
= depth (1;+19),
2 depth Ij+1¢
2 tn—j = tn-1)-j+1
for 7 =1,2,--- ,n—1. Hence
H.(Ly/,9') =0 for > (|A| = |u| — kn—1) — tn_1.
Since k-1 +tn_1 = kn +t,, one has
H*(Lk/ud)/) =0 for x> (p‘l - l“‘ - kn) —tn.
Hence we are done because Ly, ¢’ and L)/, ¢, are homotopically equiv-
alent. (N

EXAMPLE 3.3. Let A = (5,3,3,1) and p = (2,1) be partitions.
Let ¢ : R® — R’ be an R-module homomorphism defined by

z 0 O
y = 0
zZ Yy =z
0 2z y
0 0 =z

Then depth I (¢) = depth I5(¢) = depthI3(¢) = 3 and ky = 4, ke = 1,
k3 = 0. Hence we choose ¢/, such that

t1 = min(jA| — |u] — k1, depth I3¢) = 3,
to = min(ty + (k1 — k2), depth Ir¢) = 3,
t3 = min(ty + (k2 — k3),depth I1¢) = 3.

Then
Hy(Ly/,$) =0 for x> (|A| — |p| — k3) —t3 = 6.

The following corollary in [12] can be proved by our Theorem 3.2.
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COROLLARY 3.4. Let A = (A1, A2, ---) be a partition and ty = (t1,
ta, - -+ ) a sequence of nonnegative integers satisfying

ti—ti—1 <A
forj=2,---.

If ¢ : G — F is an R-module homomorphism between free R-modules
G and F with n = rank G < rank F = m and

depth Ij¢ > t,_j11

forj=1,2,--- ,n, then
H.(Lx¢) =0

whenever x > Ay + -+ A, — t,.

ProoF. Sinceu = (O), kj_l—kj = )‘j and |/\|—|/,L|—kn = A1+ A,
Hence we are done by Theorem 3.2. O

COROLLARY 3.5. Let A = (A1, A2, ---) and u = (p1, pe, ---) be
partitions with p C X and let ty;, = (t1, t2, ---) be a sequence of
nonnegative integers satisfying

tj —tj-1 S kjo1—kj

forj =2,---.If ¢ : G — F is an R-module homomorphism between
free R-modules G and F with n = rankG < rank F = m and

depthl; > tn_j41
forj=1,2,---,n then

(1) supp H.(Ly;,¢) S V(In9) for all ¥ > 0.

(2) Foreachj=1,2,--- ,n—1,

supp H.(Lx;.¢) € V(I;¢)

whenever x> (|A| — |p| — kn—j) — tn—j.
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PROOF. (1) Suppose that P is a prime ideal but P & V(I,,¢). Then
I,,¢ is invertible locally at P, and ¢, is a split injection. Hence L/, ¢,
is acyclic. The isomorphism

H*(LA/u¢p) = H*(L)\/p.d) ® Rp) = H, (L)\/u¢) ® R:D

implies that P ¢ supp H.(L),¢) for all x > 0. (2) Suppose that P is
a prime ideal but P & V(I;¢) for j =1, ---, n — 1. Then I;¢ blows up
in R,, and over R, we have ¢, = ¢' @& 1, where ¢’ is a homomorphism
between a free R,-module F’ with dimF’ = m — j and a free R,-module
G’ with dimG’ = n — j. If the depth conditions are satisfied for ¢, we
can apply Theorem 3.2 to ¢’. Observe that

depth I,¢' = depth I, ¢,
> depth Is+j¢
Z tno(s44)+1
= t(n—j)—s-l—l
for s=1,2,--+ ,n— j. Therefore
Hy(Ly/u¢') =0 for > (A — [p] = kn—j) — tn_j.
Since Ly,,¢' and L), ¢, are homotopically equivalent,
Ho(Lxjup) =0 for > (|| — |u| — kp—j) — tn—;.
Hence P ¢ supp H.(Ly;u,¢) for * > (|A| — |p| — kn—j) ~ tn_j. O

In order to maximize the value of ¢,, we introduce the quantities ¢;
and 6;. We define

1 = min(|\| — |g| — k1, depth I,,¢),
01 = (Al = |ul = k1) ~ t1.
Inductively, we define, for j =2, - --

E _ { {j_1 + (k‘j_l - kg) if depth In—j+1¢ > 'Ej_l + (kj—l - kJ)

]

depth I,_; 10 otherwise
and
0 ~ { 0 if depth In_j+1¢ > Ej_1 + (kj_l — kj)
’ Ej—l + (kj—l - k]) - depth In-j+1¢ otherwise.
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REMARK 3.6.

(1) If depth I,¢ > A= lﬂl — k1 and depth In—j1¢ > t~j—1 + (kj—l -
k;) forall j =2, ---, n, then ¢, = |A| — || — kn. Hence Ly, ¢ is
acyclic. )

(2) If p = (0), then |A| — |g| — ko = AL + -+ + A, Hence if £, =
A1+ -+ A,, then Ly¢ is acyclic.

COROLLARY 3.7. If ¢ : G — F is an R-module homomorphism be-
tween free R-modules G and F with n = rankG < rank F = m and let
A= (A1, -+, Ap) be a partition, where \y <m —n+ 1. If

depthlj¢p > (m —n+1)(n—j+1)

foreach j =1, ---, n, then L)¢ is acyclic.

Proor. It is sufficient to show that ~t~n =X+ 4+, Ifj =1, then
depthIn¢ > (m—n+1) > A Hence t; = A;. Accordingly, we assume
the inductive hypothesis. Namely, £; = A; + - - + A;. By hypothesis,

depthl,_j¢ > (m—n+1)(F+1)
> G+ 1M
2)\1+"'+)\j+1-

Hence _ _
tj_|.1 = min(depth In_j¢, tj + (kj - kj-H))
= min(depthIn_jgb, A+ + )‘j + )‘j+1)
=A1+...+Aj+l‘
This complete the proof. 0

COROLLARY 3.8. Let A = (A1, Az, ---) and p = (py, p2, ---) be
partitions with y C X and let ¢ : G — F be an R-module homomorphism
between free R-modules G and F withn = rankG < rank F = m. Then

(1) H*(L)\/u¢) =0for*>0;+---+ gn-

(2) supp H,(Ly/,¢) C V(In¢) for x > 0.

(3) Foreachj =1,.--,n—1,supp H.(Ly,,$) C V(I,_;¢) whenever
* > 0; + -+ 6.
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PROOF. (1) Observe that if we take ty/, = (f1, 2, ---) then the
hypothesis of Theorem 3.2 is satisfied. Hence it is sufficient to prove
that

for each s =1, ---, n. We proceed by induction on s. If s = 1, then it
is trivial. Suppose s > 2. Consider the following two cases;
Case 1.We assume that depth I, 1 < ts_1 + (ks—1 — ks). Then

01+ + 05> (M = |u| — ks—1) =51 +6;

> (Al = |l = ks—1) =51 + 51
+ (ks—1 — ks) — depthl,_s11¢
(1Al = p} — ks) — depthl,_s+19
(A= |l = k) — s

by induction hypothesis and £, = depthl,_s;1¢.
Case 2. Assume the contrary to Case 1. Then §; = 0. Hence

L+ +0=00+ -+,
> (Al = lul = Kom1) = s
= (IM = lpl = ks1) = {Es — (ks—1 — ks)}
= (1Al = lul = ks) — £

by induction hypothesis and #5 = ;1 +(ks—1 — ks). (2) and (3) are
proved by Theorem 3.2 and Corollary 3.5. O
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