초록
본 논문에서는 SOFM기반 신경망 분류기를 이용한 매크로블록 기반 전송률제어 방식을 제안한다. 수학적 왜곡 비트율 모델과 귀환회기 방식을 기반으로 하는 기존의 전송률 제어 방법에 비하여, 제안된 방법은 전송비트 제어용 전역모델을 설정하고 이를 최적으로 제어할 수 있는 SOFM기반 신경망 분류기를 이용하여 영상특성 변화에 적극적인 대처를 할 수 있다. 제안된 전송률 제어 알고리즘은 기존의 MPEG-4 매크로블록 기반 전송률 제어 알고리즘에 비해 전체 연산 복잡도는 비슷하게 유지하면서 피크신호 대 잡음비의 비교에 있어서 0.2 dB ~ 0.6 dB 정도 성능이 우수함을 확인하였다.
This paper introduces a macroblock-based rate control algorithm using the neural classifier based in Self Organization feature Maps (SOFM). In contrast to the conventional rate control methods based on the mathematical rate distortion (RD) model and the feedback regression, proposed method can actively adapt to the rapid-varying image characteristics by establishing the global model for bitrate control and by using the SOFM based neural classifier to manage that model. Proposed rate control algorithm has 0.2 dB ~ 0.6 dB better performances than MPEG-4 macroblock-based rate control algorithm by evaluating with the encoded Peak Signal to Noise Ratios while maintaining similar overall computational complexity.