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TCM Without Constellation Expansion Penalty

Edit J. Kaminsky, James Ayo, and Kenneth V. Cartwright

Abstract: We present a family of constant-amplitude constellations
of even dimensions 8 and above. These constellations allow trel-
lis coded modulation to be implemented without the usual penalty
paid for constellation expansion. The new constellations are gen-
erated by concatenating either n QPSK points or n QPSK points
rotated by 45 degrees, for any n > 4. Our constellations double
the number of points available for transmission without decreas-
ing the distance between points and without increasing the average
or peak energies, introducing asymmetry, or increasing the mod-
ulation level. Effective gains of 2.65 dB with minimum complexity
through 6.42 dB with moderate complexity are demonstrated using
the 8D constellation.

Index Terms: Trellis coded modulation, constellation expansion,
spherical codes, constant amplitude, multidimensional constella-
tion.

I. INTRODUCTION

We present a family of multi-dimensional constellations
which are used in conjunction with a convolutional encoder to
achieve simple trellis coded modulation (TCM) schemes with
good asymptotic and effective gains. The constellations have
even dimension N = 2n, with integer n > 4. The new constel-
lations are generated by concatenating either n QPSK points,
or n rotated QPSK points (each 2D point is rotated by 45 °).
Thus, information transmission at 2b/s/Hz is performed over n
consecutive time intervals. By allowing the rotated version of
QPSK, the number of points in the resulting set is twice as large
as the number of points of the original QPSK over n consecutive
intervals, but the minimum Euclidean distance between points
in the constellation, the modulation level, the peak energy, and
the average energy remain identical to those in the constellation
prior to expansion. The new constellations belong to the class of
constant energy codes [1], and can be easily scaled to have unit
energy and therefore be classified as spherical codes [1], [2].

Much work on TCM has been published since Ungerboek
presented TCM as a combination of modulation and coding in
[3]. For a TCM system of overall rate k/(k + ¢), where k is the
number of input bits into the TCM encoder, and (k + ¢) is the
number of output bits, the required coding redundancy is intro-
duced with a convolutional encoder of rate m/(m + ¢), where
m < k. The resulting k + ¢ bits select, from within an expanded
constellation of 2514 possible points, the one point to be trans-
mitted.
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Fig. 1. TCM scheme of rate 2n/(2n+1)with one bit of redundancy intro-
duced by a convolutional encoder of rate m/(m+1).

We will restrict our discussion to TCM schemes with 2n in-
put bits and 2n + 1 output bits, therefore using convolutional
encoders of rate m/(m + 1), introducing only 1 redundant bit
per N-dimensional (ND) symbol. The expanded constellation
must therefore contain twice as many points as the constellation
that would be used for the uncoded case. A schematic represen-
tation of such a TCM scheme is shown in Fig. 1.

The disadvantage of constellation expansion required for
TCM, more noticeable in low dimensions, is the reduced min-
imum squared Euclidean distance (MSED) between points for
a given energy level, or the increase of modulation level and
energy for a given MSED. For example, to transmit 2b/s/Hz
with one bit of redundancy, the TCM system would use 8-
PSK or 8 AM-PM, while the uncoded system would use QPSK
[4]. To decrease the loss due to constellation expansion, higher-
dimensional constellations are used [5], but there is still a loss
associated with the constellations in prevalent use. A few au-
thors have proposed systems which prevent the constellation
expansion loss: Saha’s codes [6] do not require any expansion
of the original Q?PSK signal set. Padovani and Wolf [7] com-
bine frequency and phase modulation but their systems have a
slightly different bandwidth. In [8] dual polarizations are used
to double the dimension of the systems and allow for the intro-
duction of redundancy for coding. The systems presented here
utilize points in eight or more dimensions that do not have as-
sociated with them any expansion loss whatsoever; they also
have constant amplitude, advantageous when nonlinear ampli-
fiers are used. Our constellations also have the same modulation
level and scheme as the uncoded system (basically QPSK over
n consecutive intervals), and either are or are easily made in-
variant under rotations of 90, 180, and 270 degrees. The gain
is achieved without sacrificing data rate or increasing the band-
width of the system. The normalized redundancy [9] and the
complexity of our codes are low, and in many cases the error
coefficient is reduced below that of the uncoded system.

The use of the new constellations is exemplarized with con-
volutional encoders of low and moderate complexities for trans-
mission of 2 b/s/Hz using quadrature modulation over four con-
secutive time intervals, but analysis may be easily extended to
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the other, higher dimensional constellations with lower normal-
ized redundancy.

In Section II the new constellations are presented, followed in
Section III by the set partitioning required for trellis encoding.
In Section IV we discuss the various measures used to evaluate
our TCM schemes. A summarized discussion of decoding and
decoding complexity is presented in Section V. Results for the
8D constellation are presented in Section VI for encoders of var-
ious rates, including simulation results for the simplest codes.
Comparisons to other TCM schemes are also given in Section
VI. Concluding remarks and references follow.

II. THE NEW CONSTELLATIONS

The 2n-dimensional (2nD) points in our new constellations
are constructed by transmitting n consecutive 2D in-phase and
quadrature (I, Q) pairs, withn > 4. If I(nk+j) and Q(nk+j),
j=0,1,2,--- 'n — 1, represent the I and Q data streams for
the j%* time slot of symbol k, respectively, the k** transmitted
symbol may be written as P, = (po,p1,- - ,Pn—1), Where p;
is the 2D symbol given by (I, Q). For standard QPSK over n
consecutive time intervals there are 4™ possible points Fy; for
example, if 4 consecutive time intervals are used to generate 8D
points, there are 256 possible values of P,,. However, in order to
introduce 1 bit of redundancy for trellis coding, we need twice
as many points, namely 2 - 4” points, or 512 points in 8D. To
meet the requirement of constant envelope for all time, we re-
quire the energy normalized per 2D to remain at 2 as is the case
with QPSK when (£1, +1) are transmitted. We can satisfy both
these requirements of constant envelope and doubling the con-
stellation size without reducing the minimum squared Euclidean
distance (MSED) between points. To do this we allow 2nD sym-
bols of the form Pyr = (por, p17, -+ , P(n—1)T), Where p;r is p;
above rotated by 45 degrees. Hence, p;r may be (0, F+/2) or
(£+/2,0). Since p;r may take one of four values each, there are
4™ points of this type in n-dimensions. The new constellation
for 2nD is the union of {P;} and {Psr}, yielding the 2 - 4"
points required for TCM!.

The MSED between any two points in the rotated 2rnD con-
stellation {Pxr} is 4, as it was with the original set {P:}.
The MSED between points in {Pgr} and points in {P} is
n+n(1 —/2)?; the MSED is therefore 4 for all integersn > 4.
In summary, the inclusion of the new 4" points has not reduced
the MSED. The new constellation of points is more densely
packed in the sphere, utilizing the available 2nD space better.
Notice also that the peak and average energies of the new con-
stellations are both 2n, or 2 per 2D. Using these constellations,
then, we can select from twice as many possible points with the
same energy and at the same modulation level as unceded QPSK
over n consecutive time intervals; this is what makes our con-
stellation more attractive than others which increase the modu-
lation level to allow for redundancy. Moreover, it will be shown
that decoding for this system is straightforward and of very low
complexity even when the number of parallel transitions in the
trellis is high.

INotice that we could also use the expanded constellations without coding, to
increase the transmission rate from 2 b/s/Hz to (2n+1)/n b/s/Hz.
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Table 1. Properties of the new constellations.

n N Points E p di N(do)
4 8 512 8 025 4 8
5 10 2048 10 020 4 10
6 12 8192 12 017 4 12
Table 2. Distance distribution.
8D 10D 12D
Level i d? N(d;) a2 N(d;) a2 N@;)
0 4 8 4 10 4 12
1 4.6863 16 5.8579 32 7.0294 64
2 8 28 8 45 8 66
3 103431 64 | 115147 160 12 220
4 12 56 12 120 | 12.6863 384
5 16 166 16 210 16 495

As an example, consider 8D transmission where n = 4 con-
secutive time slots are used for each symbol. The new con-
stellation contains 512 points with MSED of 4, and both peak
and average energies of 8. The points (1,1,-1,-1,1,1,-1,1) and
(0, —+/2,4/2,0,—4/2,0,0,+/2) are two of the 512 possible 8D
points.

Table 1 summarizes characteristics of the constellations for
n = 4,5, and 6. The column labeled N(dy) indicates the num-
ber of points at MSED d2; notice that the MSED of the trellis
encoded (after partitioning) sets will be drastically larger than
the MSED within the constellation, since those points at MSED
are not assigned to the same trellis branches. The normalized
redundancy [9], p, defined as the number of redundant bits per
2D, is also listed. In general, the new constellation using n con-
secutive 2D intervals yields dimension N = 2n, 2 - 4™ for the
number of points, an energy equal to the dimension, E = N,
and normalized redundancy p = 1/n.

Table 2 presents the pre-partitioning distance distribution of
the 8D, 10D, and 12D constellations up to SED of 16. The dis-
tance distribution is important because the minimum distance
and the number of neighbours at that distance (error coefficient)
determine the probability of error of a system using such set of
points. We would like the minimun distance to be large, and
the error coefficient to be small since, clearly, the most likely
error is between closest points. The ideas behind constellation
partitioning, discussed in the next section, are to increase the
MSED between points in the partition, and minimize the error
coefficient.

III. CONSTELLATION PARTITION

In order to have subsets to assign to the trellis branches of
the convolutional encoder [4], we must partition the constella-
tions so as to increase the MSED as much as possible, keep the
number of nearest neighbours as small as possible, and maintain
rotational invariance, if possible. Wei proposed a partitioning
scheme for multidimensional constellations in [5]. This scheme
must be slightly changed in order to partition our constellations
to minimize the error coefficient N(d),which is the number of
nearest neighbours at distance d.

We use Wei’s terminology, as presented in [5] whenever pos-
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Table 3. 8D constellation partition.

Name QPSK Rotated QPSK Process (nr,rtot) MSED
2D Sublattices A,B,C,D Ar, Br, Cr, Dr Original constellation 4,4.,8) 4
4D Types T1 ,T2,‘ sy Tlﬁ Tlr, Tzl’,' Ty T16r Concatenation of 2 (16,16,32) 4
4D Sublattices  Sg,S1, -+, Sy Sor, Sir1,- -+, Syr Union of 2 (8,8,16) 4
8D Types too, to1,° " *» 77 tool, to1T, - -, ty7r Concatenation of 2 (64,64,128) 16
8D Subtype ug, Uz, -+,U31 Ul Uyl, ---,ug;r  Union of 2 (32,32,64) 16
8D Sublattice  sg, 81," -+, S15 Sqr, $1T, - -, S15T Union of 2 (16,16,32) 16
8D Sublattice  eg and e; e and e3 Union of 8 2,2,4) 8
8D Sublattice $Sg, 81, SS2, 883, * * , $815 Union of 2, mixed (-,-,16) 10.34
8D Sublattice Eo, E1,Es, -+ -, Er Union of 2, mixed (--, 8) 8

Table 4. 8D sublattices s; and subtypes u; are generated by the union
of the component 8D types indicated. 11
o Select point —> 10f 512 points

8D Subtypes u;

8D Sublattices s;
So=up Uuy
s =us Uug
so=uy Uusg
S3 = Ug Uuy
s4 =ug Uug

ss =ujo Uuy
s =uz2 Uug
s7=u14 Uuys
sg =uj6 Uuyy
Sg =u1g Uuyg
$10 = Uz U u2
811 = U2z U ugs
S12 = Ug4 U ugs
813 = Ugzg U Ug7
S14 = Ugg U ugg
815 = uzo Uugz

ug =tgo U t11;u3 =tag Utsg
ug = to1 U tyo; ug = tag U tzs
ug =to2 Utz us =too Utsy
ug =toz U tia; uy =to1 U tgg
ug = tgq U tss; ug =tgg U tyy
030 =tg5 Utss; U113 = tg7 Utyg
uyp =Ye Uts7; u13 =tgg Utys
u14 =t47 U t56; Urs = tes U tyy
U3 = tog U tys; uyy = tog U tsy
ug = tgs U tig; Urg = tay U'tze
ugp = tgs U t17; U1 =124 Utss
Uzg =to7 U tie; Ugz = t2g Uty
Ugg =t40 U t51; 25 = tg2 U tyg
Ugg = tg1 U t50; u27 =tz U ty2
Uzg = tgz U t53; 29 = tgo U tr1
ugo = tgg U tse; ugy =tg1 Utz

sible, which we now summarize: A lattice {2] (the starting set) is
partitioned into sublattices; only the bottom level is referred to
by Wei as a sublattice. The process commences with constituent
2D lattices and ends with ND sublattices, which are the subsets
assigned to trellis transitions. A sublattice may be further parti-
tioned into types and subtypes with the same MSED. Each 2nD
type is a concatenation of a pair of nD sublattices.

Only the partition for the 8D constellation is detailed here,
and it is summarized in Table 3. The column labelled (nr, r, tot)
lists the number of non-rotated QPSK subsets, the number of
rotated-QPSK subsets, and the total number at the partition level
indicated. Notice that the last two entries describe sublattices
that are “mixed”, in the sense that both rotated and non-rotated
points are used in these subsets.

First we form four 2D sublattices for the QPSK and rotated
QPSK 2D constellations: A =(1,1), B=(-1,-1), C=(1,-1), D=(-
1,1), Ar=(0,4/2), Br=(0,-\/2), Cr=(+/2,0), and Dr=(-1/2,0).
Next, we form the 32 4D types by concatenating a pair of points:
Ti=(A,A), T2=(A,B),- - -, T4=(A,D), T5=(B,A), - -, T16=(D.,D),
along with the corresponding T;r through Ty¢r. Grouping, by
union, a pair of these 4D types yields the 4D sublattices, eight
for each of the two sub-constellations: So={T1 U Tg}, S1={T11
U Tie}, Se={T2 U Ts}, Ss={T12 U Ti5}, S4={Ts U Ts},

I3 {Pi)m{p.“}
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Fig. 2. TCM encoder showing the convolutional encoder of rate 1/2 and
the mapping to the sets obtained from set partitioning.
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55={T10 U T13}, Se={T4 U T7}, S7={T9 U T14}, and the cor-
responding Ser through S,1. Now we form 8D types by concate-
nating a pair of these 4D sublattices, for a total of 128 types. We
label them tgq through t77 and tger through ty7r where the two
subscripts indicate the constituent S; sublattices. The MSED
between the 8D points within each type t;; is 16 since at least 4
bits differ. For example, tgs = {S3 Ss}={(T12 Th0); (T12 Ti3);
(T15 T10); (T1s T1g)} ={(1-1-111-1-1-1);(1-1-11-11
11);(-111-11-1-1-1);(-111-1-1111)}.

Remember that the final partition subsets (sublattices) are to
be assigned to the trellis transitons. The trellis will have as many
parallel transitions as there are points within the subset. To re-
duce the number of subsets to be used for lower rate codes with
few trellis states, we continue as follows: Form 8D subtypes, la-
belled ug through ug; and upr through ug; r, by union of the 8D
types. These are detailed in Table 4, where only the 8D subtypes
formed by the unrotated points are shown, but the rotated u;r are
composed in the same way using the rotated 8D types t;;r. The
MSED among the 8 points within each of the u; sublattices is
still 16.

Once again, we may group by union two of the u;’s, to reduce
the number of subsets by a factor of two, while increasing the
number of points within by a factor of two also. We call these
new sublattices s;, and detail their formation in Table 4. The
MSED is still 16.

Further grouping must be used for lower rate codes, produc-
ing fewer subsets and, unfortunately, decreased MSED. More
than one grouping path is now possible; which way is chosen
depends on the number of subsets desired at the end of the par-
titioning process.
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Table 5. Mixed 8D sublattices ss; and E;.

8D Sublattices E;
Eg = ssg U ssg

E; =ss; U ssy

Ey =ssy U ss5

Eg =ss3 U ssy

E4 =ssg U ssi3

E5 =8Sg U 8819

Eg¢ = ss19 U 815
E7 =8817 USS14

8D Component Sublattices ss;
SSp =S U s5T;  §S; =83 U sqr

SSo = Sg U sgr; 883 =s3 U sir

$S4 = S4 U SgI;  SS5 =S5 U s7r
ssg= 8¢ U S3r; sS7 =87 U SoT

SSg = Sg U 81015 SSg = 8¢ U sq11
$S10= S10 U SgI; $S11 =811 U Sor
§812= 812 U 814I; 8813 = 813 U 8157
8814 =814 U S121; 8815= S15 U 8131

Table 6. Partition of the 8D constellation.

Subset No.of No.pts. MSED No. at

Labels subsets within within MSED
too - tyyr 128 4 16 2
Ug - ugiT 64 8 16 6

Sg - S15T 32 16 16 14
SSg - SS15T 16 32 10.3431 8

Eo - E7 8 64 8 4

€0 -¢4 4 128 8 28

To group into 4 final subsets of 128 points each, with
MSED=38, we create the sublattices eg = Ul_¢si, €1 = UX2gs;,
e2 = Ul_gsit, and e3 = U3gs;r. A block diagram of a simple
system which uses this partition is shown in Fig. 2, along with
references to the relevant partition levels.

If we desire 16 subsets, we combine sublattices s; and s;r,
in what we’ve called “mixed sets” ss;, as indicated in Table 5.
There are 8 neighbours at MSED of 10.3431 within each of the
above ss; subsets. Joining pairs of these yields the 8 subsets to
be used for a rate 2/3 encoder; these are made up by the union
of two of the ss;’s, and are also shown in Table 5. The MSED in
this case is 8, with only four points at such distance.

Details about all these groupings are given in Table 6.

IV. EVALUATION OF TCM SCHEMES

Many TCM schemes can be designed with our multidimen-
sional constellations; we evaluate here only a few, all of them us-
ing the 8D constellation. The evaluation is based on the follow-
ing standard measures: Asymptotic gain [4], effective gain [9],
normalized redundancy [9], decoding complexity [10], modu-
lation level and, ultimately, the probability of symbol error vs.
signal to noise ratio (SNR) curves. We define SNR in terms of
the symbol energy, E, and the variance of each component of
the AWGN noise, 62, as

E

= —_—. 1
SNR No? 1)
The probability of symbol error bound is
dfree
P, > N(dfree)Q 7 3 2)

where Q(-) is the Gaussian error-probability function and
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N(djgree) is the average number of pairs of trellis paths at dis-
tance dyre.. The free distance, dy,.., is determined by

dfree = Min(dpan dmin); 3)

where dp,, is the MED between parallel branches in the trellis,
and dmin is the MED between paths of length longer than one
branch. Asymptotic gain is given by
d2free
d% b

where d2 represents the MSED of the equivalent (same energy
and same rate) uncoded system.

Forney [9] uses the rule of thumb that every factor of two in-
crease in the error coefficient with respect to that of the uncoded
system reduces the coding gain by about 0.2 dB. The loss, }, is
then given by:

G 4 = 10log,, ( 4)

NO [
log,o (_“No, u)

log;0(32)
where N, . is the error coefficient of the coded system normal-
ized per 2D, and N, ,, is the corresponding normatized error

coefficient for the uncoded system. This enables us to compute
an effective coding gain, veyy :

&)

(6)

Normalized redundancy, p, is the number of redundant bits
per 2D symbol [9]. In our case, we use only one redundant bit
in 8, 10, and 12D, yielding redundancies of 0.25, 0.20, and 0.17,
respectively.

Yeff = Ga— A

V. TCM DECODING

As far as the authors can determine, there is no single quan-
tity used to characterize the TCM decoding complexity. TCM
decoding is best understood if separated into two: Viterbi de-
coding and subset decoding. There is a complexity associated
with each of these two phases; in both cases, we desire to have
low complexity.

A. Viterbi Decoding

The Viterbi decoding process uses the standard Viterbi decod-
ing algorithm [11], [12] to search the trellis and find the most
likely path, given the received sequence of subsets. Real imple-
mentations truncate the decision length to about 5 times the con-
straint length of the code [12], therefore making a decision after
a sequence of at least 5 symbols have been received. Viterbi
decoding for TCM is performed, basically, in the same way as it
is done for convolutional codes.

For Viterbi decoding complexity evaluation, we use 3 as pre-
sented in [10]:

v+m

B = log, ( )

where m is the number of bits checked by the encoder, and v is
the constraint length of the code. This quantity is an indication

)zu+m—log2n,
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of the decoding complexity of the Viterbi decoder, but provides
no information about the complexity of the required subset de-
coding, i.e., the selection of the point within the selected subset.

B. Subset Decoding

Subset decoding chooses the point within the selected subset,
that is closest to the received symbol. This, therefore, is the
decoding of the parallel transitions in the trellis. The number of
comparisons or distance computations is a partial indicator of
the complexity of subset decoding. We emphasize that even for
the simplest code presented here, the 8D TCM system with an
encoder with R=1/2 and v = 2, which has 128 parallel branches
per transition, (shown in Fig. 2), the complexity of the subset
decoder is very low since no distance computations need to be
performed in most cases, and only eight in the rest.

As mentioned when introducing the new constellations, no
asymmetry or increase in the modulation level is introduced with
our constellations; i.e., we are still basically dealing with QPSK,
and the subset decoding is therefore quite simple. We will limit
this discussion to decoding of the final 8D subsets e through e4;
moreover, due to the similarity between all these subsets we can,
without loss of generality, discuss only eg. This is the decoding
required for the system of Fig. 2.

Once the Viterbi decoding algorithm has selected the subset
(eo), a single point from within the selected subset must be cho-
sen as the most likely transmitted symbol, selecting one of the
128 parellel transitions. Hard-limiter decoding (with a thresh-
old of 0) of the received signal is performed independently in
each of the 8 dimensions. A table look-up operation is then per-
formed to determine whether the hard-limited symbol belongs
to the selected subset; if it does, it is chosen as the decoded
symbol without any distance computations performed. If it does
not belong to the selected subset, then 8 distance computations
must be performed. Based on the way the partition was done, if
the thresholded symbol does not belong to the subset of interest,
a symbol that differs from it in only one position will. In 8D,
there are eight of these symbols, and one of these will be closest
to the received symbol. The received symbol, then, is compared
to these 8 candidate symbols, and the closest is selected as the
decoded symbol. This decoding method gives exactly the same
performance as the more computationally intensive method of
comparing the received symbol to the 128 points within the sub-
set selected by the Viterbi decoder.

V1. RESULTS

We present in this section the evaluation results of several
schemes using the 8D constellation together with convolutional
encoders of various rates. Higher gains are achieved as the
complexity increases. Similar schemes can be developed for
the higher dimensional constellations, but results for dimension
higher than 8 are not discussed in the current paper. We sepa-
rate the discussion and presentation of results according to the
system’s asymptotic gain. All the systems evaluated use the 8D
constellation and the partitions of Table 3. We follow the dis-
cussion of our codes with a comparison to other TCM schemes
used to transmit 2 b/s/Hz.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 4, NO. 2, JUNE 2002

1E-01

1E-02 57— T
+ e m \\;v
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SNR (dB)
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Fig. 3. Probability of symbol error, Pes, versus symbol SNR, in dB, of
coded systems with new 8D constellation. Results are shown for
encoders of rate 1/2 and 2/3, with 4 and 8 trellis states, respectively,
as well as for the uncoded QPSK reference system.

A. 8D TCM Systems Yielding G4=3.01 dB

The convolutional encoder of rate 1/2, shown in Fig. 2, yields
an extremely simple system which uses our 8D constellation.
The 512 points are partitioned into the 4 subsets ep through e3
of 128 points each. The system’s complexity, as defined by (7),
is 3 =2+ 1 —log, 4 = 1 since only one bit is checked by the
encoder, and the constraint length is v = 2, withn = 4.

The free distance is determined by the parallel transitions, and
is d2,,, = 8, the MSED among points in any e; sublattice. The
MSED among uncoded points (standard QPSK) is 4, yielding
an asymptotic gain of G4 = 10log;, (2) = 3.01 dB. The losses
due to the error coefficient are determined by N, . = 7 (28
paths in 8D) and N, , = 2, and are A = 0.36 dB, yielding an
effective gain of v.sy = 2.65 dB. The redundancy is 1 bit per
8D, or p = 0.25 normalized per 2D.

By increasing the rate of the convolutional encoder to 2/3,
with 8 states in the trellis, and 3 memory elements, we may use
the partition sets Eo-E7. The free MSED, dffr ce» 18 still 8, but
the error coefficient is reduced to N, . = 1 (4 parallel paths in
8D) yielding additional gains of 0.2 dB. The effective gain is
therefore .y = 3.21 dB. The Viterbi decoding complexity is
now 8 = 3 + 2 — 2 = 3, with little subset decoding complexity,
and a redundancy of p = 0.25.

Fig. 3 presents simulation results in the form of probability of
symbol error, Pes, vs. SNR, in dB, for the system of Fig. 2, using
a Viterbi decoder truncated to 12 symbols. We define SNR as
the ratio of total energy E to total noise energy No2. The perfor-
mance of the system with the convolutional encoder with R=2/3,
also shown in Fig. 3, is just slightly better than that of the coded
8-PSK system presented in [4], which uses the same 8-state en-
coder; this improvement is due to the reduction in the error co-
efficient when our constellation is used. The performance of
the baseline uncoded QPSK over 4 consecutive intervals is also
shown in that plot.

B. 8D TCM System Yielding G4=4.13 dB

If we partition the 8D constellation into the 16 ss; sublat-
tices of 32 points each, discussed in Section III, and use an
encoder of rate 3/4 to introduce one bit of redundancy every 4
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Table 7. Codes with 8D constellation.

d2

Rate ﬂ free N(dfree) No,c GA A Yeff
12 1 28 7 301 036 265
2/3 3 8 4 1 301 -020 321
3/4 5 10.3431 8 2 413 0.00 413
4/5 7 16 14 35 602 016 586
5/6 9 16 6 1.5 602 -0.08 6.10
6/7 11 16 2 0.5 6.02 -040 642

signalling intervals, we can increase the MSED to 10.3431. We
therefore have G4 =4.13 dB with N, . = 8/4, which yields
Yers = G4 =4.13 dB. Again, there is no loss due to constella-
tion expansion, and no loss due to nearest neighbours since the
error coefficient remains the same as for the uncoded system.
The complexity of the Viterbi decoder for this scheme is 8 = 5.
Subset decoding is similar to that presented in Section V-B, ex-
cept that if the hard limited symbol is not in the chosen subset,
the subset it belongs to must be identified through lookup tables
before (a small number) of distances are computed.

C. Higher Gain Codes with 8D Constellation

By increasing the rate and the number of states of the con-
volutional encoder, we can increase the MSED between parallel
transitions to 16. Clearly, then, the asymptotic gain is increased
to G 4 = 6.02 dB. The error coefficient decreases as the rate and
number of states of the encoder increases, but the complexity of
the Viterbi decoding (not the subset decoding) increases. In all
cases the redundancy is still p = 0.25.

Table 7 summarizes details for the 8D codes just discussed;
it includes the complexity 3, the free squared distance dferee,
the error coefficient in 8D and normalized to 2D, N (d free) and
N, c.respectively, and the associated loss or gain A, as well as
the asymptotic and effective gains of the system, in dB, G4 and
Yers. TCM systems with convolutional encoders of rate 5/6 and
above are not used as often due to the increased complexity of
the Viterbi decoding process, but are included for completeness
and to demonstrate the additional gains arising from the reduc-
tion in the error coefficient.

D. Comparison to Other TCM Systems

We have gathered some comparison data in Table 8, where we
only show results for encoders of rate 2/3 and 3/4. We include
two of our codes and several others presented in the open liter-
ature, for the same transmission rate of 2 b/s/Hz. We concen-
trate on codes using multidimensional constellations with mod-
erate complexities, represented by v, the number of memory el-
ements. The comparison is by no means comprehensive, but
should confirm the benefits of our codes, even though our gains
are not always greater than those of other TCM schemes. We,
again, stress that the advantage of using our constellations is the
simplicity of implementation and decoding, and the lack of con-
stellation expansion penalty without an increase in modulation
level.

From the entries in Table 8, we see that our codes are compet-
itive, in particular when effective gain and complexity are used
to compare codes. Notice that Divsalar’s rate-3/4 code [13] has
the highest asymptotic gain, but that asymmetric constellations
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Table 8. Comparison of TCM systems with convolutional encoders of

rate 2/3 and 3/4.

Rate » N »p G4 Y Ref.
2/3 2 8 1/4 301 321 Here
2/3 2 8 14 301 289 [10]
2/3 4 8 1/4 301 289 [10]
2/3 4 4 1 415 NA [13]
3/4 3 8 1/4 413 4.13 Here
3/4 3 8 514 527 375 [9]
3/4 6 8 54 527 449 [9]
3/4 3 8 14 402 NA [9]
3/4 6 8 1/4 527 449 [9]
3/4 3 8 1/4 301 3.01 [10]

are used. For the rate 3/4 codes, some of Forney’s codes [9]
achieve higher gains, but at the expense of more redundancy
and/or higher complexity of the trellis.

VII. CONCLUSIONS

We have presented trellis coded modulation using novel
spherical multidimensional constellations which are twice the
size of the constellation used for uncoded modulation, have the
same average and peak energies, same modulation level, and
same minimum distances between points. Asymptotic gains be-
tween 3.01 and 6.02 dB are easily achieved, with no loss due
to constellation expansion. Additional gain is achieved in some
cases by a reduction in the error coefficient under that of the
uncoded system. The systems either are or may be made invari-
ant under rotations of 90, 180, and 270 degrees with the use of
differential encoders. Decoding is performed with a Viterbi de-
coder and simple subset decoding using hard limiters and lookup
tables.
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