PTC/NTC Properties of Carbon Black/HDPE Conductive Composites Containing Elastomer

엘라스토머를 함유한 Carbon Black/HDPE 전도성 복합재료의 PTC/NTC 특성 연구

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 김학용 (전북대학교 섬유공학과(공업기술연구소)) ;
  • 이덕래 (전북대학교 섬유공학과(공업기술연구소))
  • Published : 2002.08.01

Abstract

The effects of elastomer and carbon black contents on the positive temperature coefficient(PTC) and the negative temperature coefficient(NTC) behavior of carbon black (CB)-filled HDPE composites are studied. The 20~50wt% CB-filled HDPE composites containing 0, 1, 3 and 5wt% elastomer are prepared using an internal mixer and compression-molded at 18$0^{\circ}C$ for 10min. The PTC/NTC behavior of the composites is dependent on the CB and elastomer contents. The PTC behavior is due to the breakage of the conductive networks, caused by the thermal expansion at the melting temperature of HDPE and the NTC behavior is caused by reformation of conductive chains, resulting from the relaxation of polymer structure and reagglomeration of CB particles. It is found that the impact strength of the composites containing elastomer is improved, even though they exhibit slight decrease in PTC intensity. This probably resulted from the improvement of impact damping, due to the increase in the internal stress of the composites.

Keywords

References

  1. J.Appl.Phys A New Class of Switching Materials F.Buench
  2. Polym.Composite v.18 Electrical Properties of Crosslinked Polyethylene/Carbon Black Switching Composites as a Function of Morphology and Structure of the Carbon Black G.Yang;R.Teng;P.Xiao https://doi.org/10.1002/pc.10299
  3. Polym.Eng.Sci v.18 Electrical Properties of Carbon Black Filled Polyethylene M.Narkis;A.Ram;F.Flashner https://doi.org/10.1002/pen.760180808
  4. UK Patent Specification 604 v.6951 no.718 E.Frydman
  5. Polym.Eng.Sci v.23 Electron Transport Processes in Conductor-Filled Polymers R.D.Sherman;L.M.Middleman;M.Jacobs https://doi.org/10.1002/pen.760230109
  6. J.Appl.Polym.Sci v.54 PTC Effect of Polymer Blends Filled with Carbon Black W.Jia;X.Vhen https://doi.org/10.1002/app.1994.070540904
  7. Synth.Met v.27 Electrical Conductivity in Heterogeneous Polymer Systems(Ⅳ) [1] A New Dynamic Interfacial Percolation Model B.Wessling https://doi.org/10.1016/0379-6779(88)90384-0
  8. Polymer v.41 Positive and Negative Temperature Coefficient Effects of an Altermating Copolymer of Tetrafluoroethylene-ethylene Containing Carbon Black-Filled HDPE Particles J.Feng;C.M.Chan https://doi.org/10.1016/S0032-3861(00)00095-1
  9. Eur.Polym.J v.33 Studies on th PTC/NTC Effect of Carbon Black Filled Low Density Polyethylene Composites H.Tang;X.Chen;Y.Luo https://doi.org/10.1016/S0014-3057(96)00221-2
  10. J.Mater. Sci v.32 Carbon Black/High Density Polythylene Conducting Composite Materials P.J.Mater;K.M.Thomas https://doi.org/10.1023/A:1018567731526
  11. J.Mater.Sci v.32 Carbon Black/High Density Polyethylene Conducting Composite Materials S.J.Mater;K.M.Thomas https://doi.org/10.1023/A:1018567731526
  12. J.Colloid Interface Sci v.232 Role of Chemically Modified Carbon Black Surfaces in Enhancing Interfacial Adhesion between Carbon Black and Rubber in a Composite System S.J.Park;J.S.Kim https://doi.org/10.1006/jcis.2000.7160
  13. Marcel Dekker Carbon Black J.L.White;A.Voet
  14. J.Colloid Interface Sci v.188 London Dispersive Component of the Surface Free Energy and Surface Enthalpy S.J.Park;M.J.Brendle
  15. Polym.Intern v.44 Properties and Applications of Filled Conductive Polymer Composites X.S.Yi;G.Wu;Y.Pan https://doi.org/10.1002/(SICI)1097-0126(199710)44:2<117::AID-PI811>3.0.CO;2-L
  16. J.Polym.Phys.Ed v.25 On the Percolative Behavior of Carbon Black Crosslinked Polyethlene Systems L.Benguigui;J.Yacubowich;M.Narkis https://doi.org/10.1002/polb.1987.090250109
  17. Polym.Eng.Sci v.25 Some Properties of Silane-Grafted Moisture-Crosslinkes Polyethylene M.Narkis;A.Tzur;A.Vaxman
  18. J.Appl.Polym.Sci v.48 The Positive Temperature Coefficient Phenomenon of Vinyl Polymer/CB Composites H.Tang;J.Piao;X.Chen;Y.Luo;S.Li https://doi.org/10.1002/app.1993.070481013
  19. US Patent v.3 no.243 F.Kohler
  20. J.Nat.Rubber Res v.12 Crack Growth and Strain Induceed Anisotropy in Carbon Black Filled Natural Rubber J.J.C.Busfield;C.H.Ratsimba;A.G.Thomas
  21. Polym.Eng.Sci v.29 Cold Compoction of Polyether-etherletone and Nickel Powder Blends J.J.Reilly;J.S.Kim https://doi.org/10.1002/pen.760292006
  22. Elastomer v.35 Filler-Elastomer Interactions(Ⅱ)-Cure Behaviors and Mechanical Interfacial Properties of Carbon Black/Rubber Composites S.J.Park;J.S.Kim
  23. Rubber Chem.Technol v.66 Filler-Elastomer Interactions.Part Ⅶ,Study on Bound Rubber S.Wolf;M.J.Wang;E.H.Tan
  24. polym.Eng.Sci v.13 Glass Transition Temperature as a Guide to Selection of Polymer suitable for PTC Materials J.Meyer https://doi.org/10.1002/pen.760130611
  25. J.Phys.Chem.Solids v.61 Positive Temperature Coefficient in Ho-Doped BaTiO₃Ceramics A.Al-Shahrani;S.Abbouly https://doi.org/10.1016/S0022-3697(99)00397-2
  26. J.Mater.Sci v.35 Characterization of the Impact Properties of Three-Dimensional Glass Fabric-Reinforced Vinyl Ester Matrix Composites S.J.Park;W.B.Park;J.R.Lee https://doi.org/10.1023/A:1026708622639