DOI QR코드

DOI QR Code

Changes of DNA Fragmentation by Irradiation Doses and Storage in Gamma-Irradiated Fruits

감마선 조사 과일류에서 조사선량과 저장기간에 따른 DNA Fragmentation의 변화

  • Kim, Sang-Mi (Dept. of Food and Nutrition, Hannam University) ;
  • Park, Eun-Ju (Division of Life Sciences, Kyungnam University) ;
  • Yang, Jae-Seung (Laboratory for Detection of Irradiated Foods, Korea Atomic Energy Research Institute) ;
  • Kang, Myung-Hee (Dept. of Food and Nutrition, Hannam University)
  • 김상미 (한남대학교 식품영양학과) ;
  • 박은주 (경남대학교 생명과학부) ;
  • 양재승 (한국원자력연구소 식품검지실) ;
  • 강명희 (한남대학교 식품영양학과)
  • Published : 2002.08.01

Abstract

The changes in DNA damage were investigated during storage after irradiation. Kiwi, orange and pear were irradiated at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy and stored for 3 months at 4$^{\circ}C$. The comet assay was applied to the sample seeds alt the beginning of irradiation and at the end of storage. Seeds were isolated and crushed, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 2 min and then stained. DNA fragmentation in seeds caused by irradiation was quantified as tail length and tail moment (tail length $\times$ % DNA in tail) by comet image analyzing system. Immediately after irradiation, the differences in tail length between unirradiated and irradiated fruit seeds were significant (p<0.05) in kiwi, orange and pear seeds. With in-creasing the irradiation doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. The results represented as tail moment showed similar tendency to those of tail length, but tile latter parameter was more sensitive than the former. Similarly even 3 months after irradiation, all the irradiated fruit seeds significantly showed longer tail length than the unirradiated controls. These results indicate that the comet assay could be one of the simple methods of detecting irradiated fruit seeds. Moreover, the method could detect DNA damage even after 3 months after irradiation.

과일의 방사선 조사 여부 확인과 저장에 따른 변화를 측정하기 위해 감마선 조사로 유도된 DNA손상을 comet assay로 확인하였다. 키위, 오렌지, 배를 구입하여 0.1, 0.3, 0.5, 0.7, 1.0 kGy의 저 선량으로 조사하고 비 조사 시료와 조사 시료간의 DNA 손상정도를 tail length와 tail moment로 측정하였다. 과일 씨의 DNA를 형광 염색하여 이미지 분석기를 이용하여 comet 양상을 관찰한 결과, 모든 시료에서 비 조사 시료보다 조사시료의 tail length가 더 길었으며 조사 선량이 증가할수록 tail length가 유의적으로 길게 나타났다. Tail moment로 나타난 결과도 이와 비슷하였으나 전체적으로 tail length에 비해 그 민감도가 낮았다. 방사선 조사한 과일을 저온에서 3개월 동안 저장한 후에도 저장 전과 마찬가지로 모든 시료에서 비 조사시료보다 조사 시료의 tail length가 더 길었으며, 조사 선량이 증가할수록 tail length가 길게 나타나, 저장 후에도 comet assay를 이용해 조사 시료와 조사 시료의 방사선 조사여부를 검지할 수 있었다 따라서 본 연구결과 comet assay는 신선한 과일과 일정기간 저장한 과일의 방사선 조사여부 판별에 유용하게 사용될 수 있음을 알 수 있었다.

Keywords

References

  1. Yang JS. 1997. Detection of irradiated foods. Food Sciences and Industry 30: 121-130.
  2. Farkas J. 1998. Irradiation as a method for decontaminating food. Int J Food Microbiol 44: 189-204. https://doi.org/10.1016/S0168-1605(98)00132-9
  3. WHO. 1981. Wholsomeness of Irradiated Food. Report of a Joint FAO/IAEA/WHO Expert Committee. Technical Report Series 651. Geneva, Switzerland.
  4. Loaharanu P. 1995. Food irradiation: current status and future prospects. In New Methods of Food Preservation. Gould GW, ed. Blackie Academic & Professional, Glasgow. p 90-111.
  5. Nam HS, Kim KE, Yang JS, Ly SY. 2000. Food majoring college students' knowledge and acceptance of irradiated food. Korean J Dietary Culture 15: 269-277.
  6. Delincee H. 1998. Detection of irradiated food: DNA fragmentation in grapefruits. Radiat Phys Chem 52: 135-139. https://doi.org/10.1016/S0969-806X(98)00062-0
  7. Fairbairn DW, Olive PL, O'Neill KL. 1995. The comet assay: a comprehensive review. Mutat Res 339: 37-59. https://doi.org/10.1016/0165-1110(94)00013-3
  8. Cerda H, Delincee H, Haine H, Rupp H. 1997. The DNA "Comet assay" as a rapid screening technique to control irradiated food. Mutat Res 375: 167-181. https://doi.org/10.1016/S0027-5107(97)00012-2
  9. Koppen G, Cerda H. 1997. Identification of low-dose irradiated seeds using the neutral comet assay. Lebensm-Wiss u-Technol 30 452-457. https://doi.org/10.1006/fstl.1996.0205
  10. Cerda H. 1998. Detection of irradiated fresh chicken, pork and fish using the DNA comet assay. Lebensm-Wiss u-Technol 31: 89-92. https://doi.org/10.1006/fstl.1997.0304
  11. Cerda H. 1998. Detection of irradiated frozen food with the DNA comet assay: Interlaboratory test. J Sci Food Agric 76: 435-442. https://doi.org/10.1002/(SICI)1097-0010(199803)76:3<435::AID-JSFA969>3.0.CO;2-X
  12. Kim CK, Yang JS, Lee HJ. 1999. Detection of irradiated grains using the DNA 'Comet assay'. Korean J Food Sci Technol 31: 906-911.
  13. Oh KN, Park JY, Kim KE, Yang JS. 2000. Detection of irradiated fruits using the DNA comet assay. Korean J Food Sci Technol 32: 531-537.
  14. Oh KN, Kim KE, Yang JS. 2000. Detection of irradiated beans using the DNA comet assay. J Korean Soc Food Sci Nutr 29: 843-848.
  15. Park JY, Oh KN, Kim KE, Yang JS. 2000. Detection of irradiated beef and pork by DNA comet assay. Korean J Food Sci Technol 29: 1025-1029.
  16. Delincee H. 1996. DNA 'Comet assay' for rapid detection of irradiated food. Acta Aliment 25: 319-321.

Cited by

  1. Potential Detection of γ-Irradiated Panicum miliaceum by Viscosity Measurement during Storage vol.32, pp.4, 2003, https://doi.org/10.3746/jkfn.2003.32.4.531
  2. Detection of Radiation Induced Markers in Oranges Imported from the United States of America vol.32, pp.1, 2003, https://doi.org/10.3746/jkfn.2003.32.1.001
  3. 감마선 조사가 살구의 미생물학적.이화학적 변화에 미치는 영향 vol.37, pp.6, 2002, https://doi.org/10.3746/jkfn.2008.37.6.767