DOI QR코드

DOI QR Code

Characterization and Fermentation Characteristics of Lactic Acid Bacteria Isolated from Soybean Curd Residue (Biji)

비지에서 분리된 젖산균의 동정 및 발효특성

  • Baek, Joseph (Traditional Microorganism Resources Center, Keimyung University) ;
  • Lee, In-Seon (Dept. of Food Science & Technology, Keimyung University) ;
  • Lee, Sam-Pin (Dept. of Food Science & Technology, Keimyung University)
  • 백요셉 (전통미생물자원개발 및 산업화연구센터) ;
  • 이인선 (계명대학교 식품가공학) ;
  • 이삼빈 (계명대학교 식품가공학)
  • Published : 2002.08.01

Abstract

Two microorganisms isolated from soybean curd residue (biji) were identified as Enterococcus faecium (51% homology) and Lactobacillus rhamnosus (99.5% homology) by using gram positive identification (GPI) card and API 50 CHL kit, respectively. Ent. faecium grew well in micronized full-fat soyflour (MFS) milk, indicating pH 4.9, 0.38% acidity and 1.8$\times$10$^{9}$ CFU/$m\ell$ of viable cell counts after fermentation for 20 hr. L. rhamnosus LL showed pH 6.5 and 4.6$\times$10$^{8}$ CFU/$m\ell$ viable cell counts, but enhanced acid production in MFS milk mixture fortified with skim milk or by the addition of 1% of glucose and lactose. On the other hand, Ent. faecium LL did not show increased acid production in MFS/skim milk and MFS milk fortified with sugar. The MFS/skim milk fermented by L. rhmnosus LS and Ent. faecium LL showed 600 mg% and 350 mg% lactic acid, respectively.

비지로부터 두 균주를 순수분리하여 동정한 결과 Ent. faecium LL과 L. rhmnosus LS로 확인되었다. 분리된 균을 대두 미세분말용액에서 발효정도를 알아보기 위하여 pH, 산도, 생균수 및 유기산 함량을 측정하였다 Ent. faecium LL은 대두미세분말 용액에서 발효시 pH 4.9, 산도 0.38%, 생균수 1.8$\times$$10^{9}$ CFU/$m\ell$로 젖산생성 및 높은 생균수를 나타내었다. L. rhamnosus LS는 대두미세분말 용액에서는 4.6$\times$$10^{8}$ CFU/mL의 생균수를 나타냈지만 젖산의 생성은 매우 미흡하였다. 그러나 대두미세분말 용액에 당을 첨가하거나 skim milk를 첨가할때 산생성이 급격히 증가되었다. 대두미세분말과 skim milk 4 : 1 혼합액에서 Ent. faecium LL과 L. rhamnosus LS에 의한 젖산발효는 37$^{\circ}C$에서 20시간 안에 curd를 형성하였으며, 각각 0.33% 및 0.77%의 산도와 $10^{8}$ ~$10^{9}$ CFU/$m\ell$정도의 생균수를 보였다. HPLC 분석에서 생성된 젖산의 농도는 L. rhamnosus LS가 600 mg%로 Ent. faecium LL의 350 mg%보다 높았다.

Keywords

References

  1. Stephen H. 1999. The soy revolution. Sung-Ha public, Seoul, Korea. p 48-82.
  2. Van der Reit WB, Wight AW, Clillierers KR, Datel JM. 1989. Food chemical investigation of Tofu and its byproduct Okara. Food Chem 34: 193-202. https://doi.org/10.1016/0308-8146(89)90140-4
  3. Zee J, Boudreau A, Bourgeois M, Breton R. 1988. Chemical composition and nutritional quality of Faba bean (Vicia fada L. Minor) based Tofu. J Food Sci 53: 1772-1774. https://doi.org/10.1111/j.1365-2621.1988.tb07839.x
  4. Yamaguchi F, Ota Y, Hatanaka C. 1996. Extraction and purification of pectic polysaccharides from soybean Okara and enzymatic analysis of their structures. Carbohydr Polym 30: 265-273. https://doi.org/10.1016/S0144-8617(96)00046-X
  5. Hackler LR, Hand DB, Steinkraus KH, Van Buren JP. 1963. A comparison of the nutritional value of protein from several soybean fractions. J Nutr 80: 205-210. https://doi.org/10.1093/jn/80.2.205
  6. Hackler LR, Stillings BR, Polimeni RJ Jr. 1967. Correlation of amino acid indexes with nutritional quality of several soybean factions. Cereal Chem 44: 638-644.
  7. O'Toole DK. 1999. Characteristics and use of Okara, the soybean residue from soy milk production, a review. J Agric Food Chem 47: 363-371. https://doi.org/10.1021/jf980754l
  8. Kim DM, Baek HH, Jin JS, Lee SE, Kim KH. 1992. Physicochemical properties of soybean curd whey concentrated by reverse osmosis. Korean J Food Sci Technol 24: 311-314.
  9. Lee MS, Kim KH, Lee GJ. 1987. Microbiological studies and biochemical changes in fermenting soybean curd residue during fermentation. Korean J Food Sci Technol 19: 520-527.
  10. Ben-gera I, Kramer A. 1969. The utilization of food industry wastes. Adv Food Res 17: 77-152. https://doi.org/10.1016/S0065-2628(08)60309-2
  11. Chung SS, Chang HN, Park MY. 1978 Dehydration of soybean residue by hot-air in conjunction with filter pressing. Korean J Food Sci Technol 10: 1-7.
  12. Cho MK, Lee WJ. 1996. Preparation of high-fiber bread with soybean curd residue and Makkolli (rice wine) residue. J Korean Soc Food Sci Nutr 25: 632-636.
  13. Sohn JW, Kim WJ, Kim SS. 1985. Equations for water sorption isotherms of the mixture of dried soymilk residue and wheat flour. Korean J Food Sci Technol 17: 101-106.
  14. Sohn JW, Kim WJ. 1985. Some quality changes in soybean curd by addition of dried soymilk residue. Korean J Food Sci Technol 24: 522-525.
  15. Ohno A, Ano T, Shoda M. 1996. Use of soybean curd residue, Okara, for the solid state substrate in the production of a lipopeptide antibiotic, Iturin A, by Bacillus subtilis NB22. Process Biochem 31: 801-806. https://doi.org/10.1016/S0032-9592(96)00034-9
  16. Shin DH, Kim MS, Bae KS, Ko YH. 1992. Identification of putrefactive bacteria related to soybean curd. Korean J Food Sci Technol 24: 29-30.
  17. Cappuccino JG, Sherman N. 1983. A laboratory manual. Addison-wesley publishing company, London. p 31.
  18. Amerine MA, Ough CS. 1979. Methods for analysis of musts and wines. A wiley-interscience publication, John Wiley & Sons, New York. p 46-47.
  19. Kim KH, Bang IR, Ko YT. 1989. Effects of protease treatment of soy milk on acid production by lactic acid bacteria and quality of soy yogurt. Korean J Food Sci Technol 21: 92-99.
  20. Angeles A, Marth E. 1971. Growth and activity of lactic acid bacteria in soy-milk, part 1. J Milk and Food Technol 34: 30-36. https://doi.org/10.4315/0022-2747-34.1.30
  21. Meurman JH, Antila H, Korhonen A, Salminen S. 1995. Effect of Lactobacillus rhamnosus strain GG (ATCC53103) on the growth of Streptococcus sobrinus in vitro. Eur J Oral Sci 103: 253-258. https://doi.org/10.1111/j.1600-0722.1995.tb00169.x
  22. Gopal PK, Prasad J, Smart J, Gill HS. 2001. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67: 207-216. https://doi.org/10.1016/S0168-1605(01)00440-8
  23. Kang KG, Ma CS. 1993. Characteristics of the antibacterial substances produced by Lactobacillus casei subsp. and Streptococcus faecium. Korean J Vet Res 33: 393-406.
  24. Fernandez-garc E, McGregor JU. 1994. Determination of organic acids during the fermentation and cold storage of yogurt. J Dairy Sci 77: 2934-2939. https://doi.org/10.3168/jds.S0022-0302(94)77234-9

Cited by

  1. Bioconversion of Soybean Curd Residues into Functional Ingredients with Probiotics vol.9, pp.2, 2004, https://doi.org/10.3746/jfn.2004.9.2.138
  2. Optimized Lactic Acid Fermentation of Soybean Curd Residue (Biji) vol.7, pp.4, 2002, https://doi.org/10.3746/jfn.2002.7.4.397
  3. Bacillus firmus NA-1 균주를 이용한 비지로부터 혈전분해능효소 및 펩타이드 생산 vol.34, pp.6, 2002, https://doi.org/10.3746/jkfn.2005.34.6.904
  4. Bacillus firmus NA-1 균주와 Bacillus subtilis G7-D 균주를 이용한 발효비지의 기능성 vol.35, pp.1, 2002, https://doi.org/10.3746/jkfn.2006.35.1.115
  5. 팽이버섯(Flammulina velutipes) 분말의 젖산발효를 통한 고농도 γ-aminobutyric acid 함유 천연 발효조미료 개발 vol.24, pp.2, 2002, https://doi.org/10.11002/kjfp.2017.24.2.237