Biodistribution of [S-35] Labeled Antisense Oligodeoxynucleotides Increased Tumor Targeting With Microsphere Coinjection

  • Choe, Jae-Gol (Department of Nuclear Medicine, Korea University Medical College) ;
  • Park, Gil-Hong (Department of Biochemistry and Molecular Biology, Korea University Medical College) ;
  • Claudio Nastruzzi (Department of Pharmaceutical Science, University of Ferrara) ;
  • Yoon S. Cho-Chung (Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute) ;
  • Kim, Meyoung-Kon (Department of Biochemistry and Molecular Biology, Korea University Medical College)
  • Published : 2002.06.01

Abstract

To elucidate the effect of microsphere coinjection on the administration of oligodeoxynucleotides (ODN), we have investigated biodistribution of [S-35]-labeled antisense ODN targeted to cAMP-dependent protein kinase (PKA) RI-$\alpha$ subunit in nude mice xenografted with WiDr (human colon cancer, ATCC CCL218). The strategy of using microsphere has been proposed for cancer treatment as a carrier of therapeutic ODN so that it could offer an advantage with respect to maintaining constant ODN levels in blood and obtaining higher therapeutic ODN concentration at tumor sites. Comparative biodistribution studies were performed in nude mice (female, 20 g of body weight, n = 4-6) xenografted with WiDr cancer cells, when 0.1 $\mu$Ci (specific activity, 2.94 mCi/$\mu$mole) of [S-35]-labeled RI-$\alpha$ antisense ODN was injected alone or with microsphere (PLG-18, polylactic copolymer with cationic surfactant DDAB18). Peak tumor uptake of [S-35]-labeled ODN was significantly increased from 17.7% (at 6 h) of injected dose per gram of tissue (ID/g) to 42.5% (at 24 h) ID/g when microsphere was coinjected with ODN. The different biodistribution in the kidney accumulation (e.g., 100.2% ID/g for ODN alone and 54.9%/ID/g for microshpere coinjection) may contribute to higher blood concentration (e.g., 21.5%ID/$m\ell$ for ODN alone and 37.5%ID/$m\ell$ for microsphere coinjection) of radiolabeled ODN. Of importance is the fact that the whole body retention of radioactivity increased with microsphere coinjection from 50.8%ID/g to 68.0%ID/g after 24-h of injection. This decreased kidney accumulation and increased whole body retention of [S-35]-labeled ODN resulted in a significant improvement of ODN targeting to the tumor site. In conclusion, the coinjection of microsphere appears to be an important carrier system in vehiculation of antisense oligonucleotide to the tumor tissue in vivo.

Keywords