DOI QR코드

DOI QR Code

Fabrication of polymeric optical waveguides for parallel optical interconnection using hot embossing technique

Hot Embossing기술을 이용한 병렬 광접속용 고분자 광도파로 제작

  • 최춘기 (한국전자통신연구원 반도체·원천기술연구소 광접속모듈팀) ;
  • 김병철 (한국전자통신연구원 반도체·원천기술연구소 광접속모듈팀) ;
  • 한상필 (한국전자통신연구원 반도체·원천기술연구소 광접속모듈팀) ;
  • 안승호 (한국전자통신연구원 반도체·원천기술연구소 광접속모듈팀) ;
  • 정명영 (한국전자통신연구원 반도체·원천기술연구소 광접속모듈팀)
  • Received : 2002.02.14
  • Published : 2002.06.01

Abstract

Polymeric multi-mode optical waveguides were fabricated for parallel optical interconnection. Waveguide structures were molded by a Ni mold master using a hot embossing technique. The Ni mold master was manufactured by LIGA process. Multimode optical waveguides with a 48$\times$47 ${\mu}{\textrm}{m}$$^2$cross-section were produced by a simple two-step process. The propagation losses of the multimode waveguide measured at 0.85 ${\mu}{\textrm}{m}$ and 1.3 ${\mu}{\textrm}{m}$ wavelengths were 0.38 dB/cm and 0.66 dB/cm, respectively.

병렬 광접속용 다중모드 고분자 광도파로를 제작하였으며, 도파로 구조는 LIGA 공정에 의해 제작된 니켈 성형 마스터에 의해 hot embossing기술을 이용하여 성형하였다. 도파로 크기가 48$\times$47$\mu\textrm{m}$$^{2}$인 다중모드 광도파로를 단순 2단계 공정에 의해 제작하였으며, 0.85$\mu\textrm{m}$과 1.3$\mu\textrm{m}$ 파장대역에서 측정한 다중모드 광도파로의 도파손실은 각각 0.38dB/cm와 0.66dB/cm이었다.

Keywords

References

  1. Polymers for Electronic and photonic Applications B.L. Booth;C. P. Wong(Ed).
  2. J. Lightwave Technol v.14 Low-loss passive optical waveguides with high environmental stability M. Usui;M. Hikita;T. Watanabe;M. Amano;S. Sugawara;S. Hayashida;S. Omamura https://doi.org/10.1109/50.541226
  3. IEEE Photon. Technol. Lett. v.10 TM-pass polarizer based on a photobleaching-induced waveguide in polymers S. S. Lee;S. Garner;A. Chen V. Chuyanov;W. H. Steier;S. W. Ahn;S. Y. Shin https://doi.org/10.1109/68.681502
  4. Proc. ECTC ParaBIT-1: 60-Gb/s-throughput parallel optical interconnect module M. Usui;N. Sato;A. Ohki;N. Matsuura;N. Tanara;K. Enbutsu:M. Amano;M. Hikita;T. Kagawa;K. Katsura; Y. Ando
  5. J. Lightwave Technol. v.14 Laser-fabricated low-loss single-mode raised rib waveguide devices in polymers L. Eldada;C. Xu;K. Stengel;L. Shacklette;J. T. Yardley https://doi.org/10.1109/50.507948
  6. Proc. ECTC High density optical interconnects for board and backplane applications using VCSELs and polymer waveguides Y. S. Liu;R. J. Wojnarowski;W. A. Hennessy;J. Rowlette;J. Stack;M. Kadae-Kallen;E. Green;Y. Liu;J. P. Bristow;A. Peczalski;L. Eldada;J. Yardley;R. M. Osgood;R. Scarmozzino;S. H. Lee;S. Patra
  7. Proc. IEEE MEMS'97 Valve-less diffuser micropumps fabricated using thermoplastic replication A. Olsson;O. Larsson;J. Holm;L. Lundbladh;O. Ohman;G. Stemme
  8. Microsystem Technologies 4 Hot embossing The molding Technique for plastic microstructures M. Heckele;W. Bacher;K. D. Muller https://doi.org/10.1007/s005420050112
  9. Sensors and Actuators 83 Hot embossing as a method for the fabrication of polymer high aspect ratio structures H. Becker;U. Heim https://doi.org/10.1016/S0924-4247(00)00296-X
  10. Microsystem Technologies 4 Fabrication of LIGA mold inserts W. Bacher;K. Bade;B. Matthis;M. Saumer;R. Schwarz https://doi.org/10.1007/s005420050110
  11. Proc. IEEE MEMS '95 DEEMO:a new technology for the fabrication of microstructures J. Elders;H. V. Jansen;M. Elwenspoek;W. Ehrfeld
  12. Proc. IEEE MEMS'99 Silicon as tool material for polymer hot embossing H. Becker;U. Heim
  13. Microsystem Technologies 4 Comparative study of hot embossed Micro structures fabricated by laboratory and commercial environments L. Lin;Y. T. Cheng;C. J. Chiu https://doi.org/10.1007/s005420050109