DOI QR코드

DOI QR Code

Flusilazole의 훈증 효과에 의한 양파검은곰팡이병균(Aspergillus niger)의 포자 형성 억제

Inhibitory Effect of Flusilazole on the Spore Formation of Aspergillus niger Causing the Onion Black Mold in Vapour Phase

  • 김흥태 (충북대학교 농과대학 농생물학과) ;
  • 박세원 (건국대학교 생명환경과학대학) ;
  • 최경자 (한국화학연구소 스크리닝연구부) ;
  • 김진철 (한국화학연구소 스크리닝연구부) ;
  • 조광연 (한국화학연구소 스크리닝연구부)
  • 발행 : 2002.08.01

초록

1998년 전남 신안군의 양파 상온 저장고에서 발생한 검은색의 곰팡이는 검은곰팡이병을 일으키는 Aspergillusniger로 동정되었다. A. niger AnYD-1은 3$0^{\circ}C$에서 균사생장, 포자발아 그리고 양파에 대한 병원성이 가장 양호하였다. PDA 배지 상에서 실시한 in vitro의 실험에서 flusilazole과 hexaconazole은 A. niger AnYD-1의 균사 생장 억제 효과는 적었지만, 병원균에 살균제를 직접 처리하지 않고 증기 상태로 처리하였을 때 포자의 형성을 강하게 억제하는 특이적 인 훈증효과를 보였다. Flusilazole과 hexaconazole의 훈증의 효과는 사용하는 용매, 처리 농도와 배양 온도에 따라서 차이가 있었다. Dimethylsulfoxide와 dimethylformamide를 용매로 사용하였을 때 가장 높은 효과가 나타났으며, 고온에서 배양할수록 포자형성 억제 효과가 크게 나타났다.

In 1998, a pathogen isolated from infected onions was identified as Aspergillus niger. At 3$0^{\circ}C$, A. niger AnYD-1 showed the best mycelial growth, spore germination, and high pathogenicity to onions. In spite of the weak inhibitory effect of flusilazole and hexaconazole on the mycelial growth on PDA, they showed the specific inhibitory activity against the formation of spores in the vapour phase. With flusilazole and hexaconazole, the effects of the solvent, the applied concentration and the incubating temperature on the activities inhibiting the spore formation were confirmed. Their inhibitory effect on the spore formation in vapour phase was excellent by solving them with dimethylsulfoxide and dimethylformamide among tested solvents, and applying them at high temperature such as 30~35$^{\circ}C$.

키워드

참고문헌

  1. Agnos, G. N. 1988. Plant Pathology. Acardemin Press, New York. 803pp
  2. Gold, R. E., Ammermann, E., Kohle, H., Leinhos, G. M. E., Lorenz, G., Speakman, J. B., Stark-Umau, M. and Sauter, H. 1996. The synthetic strobilurin BAS 490 F: Profile of a morden fungicide, In: Morden fungicides and antifungal compounds, ed. by H. Lyr, P. E. Russel and H. D. Sisler, pp. 79-92. Athenaeum Press, Andover, UK
  3. Kato, T, Tanaka, S., Yamamoto, S., Kawase, Y. and Ueda, M. 1975. Fungitoxic properties of a N-3-pyndylimidodithiocarbonate derivative. Ann. Phytopath. Soc. Jap. 41: 1-8 https://doi.org/10.3186/jjphytopath.41.1
  4. Kato, T., Tanaka, S., Yamamoto, S., Ueda, M. and Kawase, Y. 1974. Effects of the fungicide, S-1358, on general metabolism and lipid biosynthesis in Monitinia fructigena. Agr. Biol. Chem. 38: 2377-2384 https://doi.org/10.1271/bbb1961.38.2377
  5. Neumann, St. and Jacob, F. 1995. Principles of uptake and systemic transport of fungicides within the plant, In : Modem SeIective Fungicides, ed. by H. Lyr, pp. 54-73
  6. 박종성. 1958. 농과대학 연구보고. 충남대학교. 1: 88
  7. Sumner, D. R. 1995. Diseases of bulbs caused by fungi, Black mold. In: Compendium of Onion and Gartic Diseases, ed. by H. F. Schwartz and S. K. Mohan, PP 26-27. APS press, St. Paul, Minnesota, USA
  8. Van Gestel, J. 1986. The vapour phase activity of antifungal compounds: a neglected or a negligible phenomenon? In: In vitro and vivo Evatuation of AntifungaI Agents, ed. by Iwata, K. and Bossche, V., pp 207-217, Elsevier, New York, USA
  9. Van Gestel, J., Van Cutsem, J. and Thienpont, D. 1981. Vapourphase activity of imazalil. Chemotherapy 27: 270-276 https://doi.org/10.1159/000237991
  10. Yarwood, C. E. 1950. Effect of temperature on the fungicidalaction of sulfur. PhytopathoIogy 40: 173-180