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Application of Learning Control to a Robotic Arm for Exercises
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ABSTRACT

An application of a simple and effective learning control scheme to a robotic arm for exercise is
presented. During exercises, the force applied by a user to an exercise machine varies for different
users and for different workouts of the same user. Learning control is used to compensate for the
difference between the actual force and the planned one. It is shown through simulation that the
learning control method decreases tracking error quickly for both time-invariant and time-varying
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1. Introduction

As living standard improves, people pay more
attention to health.
development of advanced exercise equipment to

It leads regular exercise and
help people to stay healthy. Research and
development in exercise equipment have also
greatly motivated by the need for performance

enhancement, fitness, and rehabilitation. Today’s
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equipment uses traditional plate-locaded mechanisms
in an array of individual machines integrated via a
kiosk supervisory station and facility management
network software. A few of the equipment
represent the current state-of-the-art in robotic
exercise technology that is driven by DC motors
with controlled torque and speed. A developing
trend to

workouts, monitor performance, and communicate

in  wellness exercises s customize
with clients over the Internet.
health
advances in proper exercise techniques. Different
modes  (for isometric, and
isokinetic), load

exercises are being used to meet various exercise

Biomechanics  and research  brings

example, isotonic,

motion profiles and levels of
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objectives, Future exercise machine will be able to
customize exercises based one's physical condition
and desired muscles to develop. In order to tailor
exercise profile and load level to an individual, an
robotic

and

exercise machine may need fto use

technology to adjust motion trajectories

resistance levels. As safety is paramount, not only
limits have to be applied to both resistance level
and extremes of trajectory, but the motion control
Such a machine runs

and

must also be reactive,
with
trajectories during preset time period and develops

repeatedly predetermined  forces
desired muscles ultimately. The actual resistance
experienced by a human user depends on relative
motions between the limbs of the user and the
robotic arm. The discrepancy between user's input
force and desired resistance is not well defined and
will affect the effectiveness of the exercise.

The exercise machine is extremely large and
heavy, and yet to require high precision. This
combination of size and accuracy causes such
equipment to be very expensive. The possible

sources of position or velocity error include

machining inaccuracies in which the axis of
rotation is not precisely at the geometric center of
the roller, similar inaccuracies in the machining of
the
flexibility of the belts used, and in some cases,

slippage of the belts, vibration of the tensioning

roller bearings and associated elements,

pulley involving elasticity of the belt. They are
also subject to inaccuracies from sag produced by
gravity.

It is the purpose of this paper to use a simple
the
performance of exercise equipment and give the

learning control  algorithm to  improve
opportunity to make an advanced electrome-
chanical intelligent machine,

A large number of control systems execute
repetitive operations, for example, controllers for
robots in assembling and manufacturing systems,
When controllers are executing the same command

repeatedly, majority of the errors are reproduced in

the for certain random

disturbance effects.

repetitions, except
In tracking problems these
repeating errors can be large. Over the last decade
the field of learning control has developed to allow
that

experience performing a command in order to

controller designs learn from previous
improve its performance in future repetitions.

It is natural to consider applying learning control
ideas targeted at eliminating these repeated errors
to an exercise system that perform repetitive
motions. This paper has conducted a series of
computer simulations in the use of simple D fype
learning control for high precision tracking in
exercise equipment. It studies the ability of these
laws to reduce errors in a large angular trajectory
combined with external input forces that are quite
different from the desired forces. These simulations
demonstrate the effectiveness of learning control
concepts for improving tracking accuracy by a
large margin, and doing so with minimal
knowledge about the system dynamics, and doing
so very quickly and easily, Starting with not
taking the dynamic property of the arm into
consideration at all, the tracking errors reach a
maximum of about 70° (1.22 radian)
input force deviated from the desired one by about
70 N.
repetitions of the trajectory, the tracking error for
the same deviation in input force is reduced to

less than 1.3° (0.02 radian).

when the

Applying learning control laws for 20

2. System Model

The exercise arm under study, as shown in Fig.
1, foliows a two-degrees-of-freedom RP robot. It
has a rotating arm and a translating handle.

Although the robotic arm has two degrees of
freedom, only one is used for an exercise. The
other joint is locked in a specified position. When
the rotary joint is locked, the handle will move
linearly along the arm to allow exercises such as
chess press. When the prismatic joint is locked, the
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Fig. 1 A robotic arm for exercise

handle is fixed on the arm at the proper distance
while the arm rotates to allow exercises such as
shoulder flexion. Only the rotational motion is
considered in this study.

The overall mass of the arm is 30 kg, and the
nominal distance from center of mass to the
rotation axis is 0.25 m (this value varies according
to the actual location of the handle). In order to
accommodate different users, the distance from
handle to the rotation axis can change from 057
m to 071 m. Nominal inertia about the rotating
axis is 45 kg- m’ when the handle is at the
middle of its adjustment range. The rotating range
of the arm used for this study is from -40((-0.70
radian) to 30((0.52 radian), measured with respect
to the horizontal line (negative if below the line).
The nominal speed of the rotation is 20 to 30
RPM. Thus the duration of each cycle is from 1.0
to 1.5 sec. To provide the desired resistance, the
arm Is expected fo deliver a nominal torque
ranging from 100 to 140 N-m.

The dynamics of the above robotic arm is

governed by equations of the form
160 +D6,0)0+GO) =7 (1)

where @ is the angular position vector, I

represents the inertia matrix, D includes

centrifugal and Coriolis effects, and G represents

the gravity vector. Such equations might be

derived using Lagrangian formulation or other

methods.

3. Learning Control Law
Starting around 19847 there has been
considerable research activity in the fields of

learning control. The original motivation for the

work in learning control was to improve the

performance of robots on an assembly line
performing the same task repeatedly. These control
algorithms learn  from  previous  experience
performing a specific task in order to improve
their performance in future executions of this task.
Learning control applies to situations in which the
same ftracking command is given to a control
system many times, and each time the system
starts from the same initial conditions.

Learning control could correct for external
disturbances that appear every time the command
is executed, such as the influence of gravity on
the tracking performance of a robot. Dynamics in
robotic systems are highly nonlinear and time
varying. There are relatively few control methods
that rigorously apply to time varying systems, It is
fortunate that in many control systems, the time
variation characteristics is often duplicated in
repetitions, The learning process can treat the time
varying system as repetition invariant and make
many control methods developed for time invariant
systems applicable in the repetition domain. This
paper applies a simple learning control method,
which is based on integral control concept, to the
nonlinear time-varying robotic arm for exercise
described in section II. This learning control
method gives guaranteed convergence to zero
tracking error as the number of repetitions of the
task increases.

The learning control algorithms takes the form

Of(1~8)

uj+|(t)=uj(t)+F(ej('), ej()) 0<t<T (2)
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where w;,, and w; are the control inputs at the
(G+Dth and jth

e;= 6,— §, are the error and error rate between

iteration, e;,=6;—6, and

the actual output 6; and the desired trajectory 6,

at the jth iteration, respectively.

We assume that the form of the nonlinear
differential equation (1) is known from the laws
of dynamics, but the knowledge of system
characteristics such as masses, inertias, lengths,
axis directions, load is poor or
changeable, It is the task of the learning process
to eliminate errors due to poor knowledge of
load being

principal and

system characteristics and variable
manipulated, In order to apply learning control
algorithm, the dynamic equation of the robotic arm

is rewritten as®

16,;p)0, + D(0,,0,;p)6, +G(0,;p) =7, (3)

Coefficients I, D and G are nonlinear functions
of various parameters of the arm and those
parameters that appear linearly in the coefficients
I, D and G are denoted by ».

The actuator for rotating the arm applies a
desired generalized torque 7, which is a
combination of a learning control signal (2) with

. . 5
torque error . between input and desired force.”

This torque expressed in learning control as

7 (@) =u; () +7.() 4

Then the learning control algorithms for system
(3) can be described as follows:

uj+|(t):uj(t)+q)éj(t) (5)

where @ is the gain matrix to be chosen.

Let C and B be state output and
matrices with appropriate dimensions and assume
that CB is
convergence conditions of the above

: 17 .
learning control law"” is

input

product nonsingular.(l'Z) The

D type

|- @ca ||w <1 6)

with initial condition
6,(0)=6,(0), (j=0,1,2---- ).

}%ej(t)=0 7

and

4. Simulation Results

Application of the learning control to the robotic
arm for exercise is simulated with the same
parameter values as described in system model
section II. No information on the exercise arm's

dynamic property is used in the simulation. This
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Fig. 2 Desired trajectory profile
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Fig. 3 Trajectory tracking histories for case 1
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Fig. 4 Trajectory tracking histories for case 2

may be viewed as an extreme approach, since
certain known information can be used for control
purpose. We want to see the effectiveness of the
learning control in this situation.

The desired trajectory is defined as a linear
function with parabolic blends, as shown in Fig. 2.
The angular position of the arm increases smoothly

from -40° (-0.70 radian) to 30° (0.52 radian)
89)

in
1 sec.
in the simulation is

The gain for the
learning process is selected as @=157 (with only

The sample time used
chosen as 10 milliseconds.

one joint, it is actually a scalar).
These three different
cases in the application of the learning control to

simulations investigate

the arm. They are:

o

Pos. [radian]

62 04 )

Fig. 5 Trajectory tracking histories for case 3

Case 1: Desired force and actual input force are
both constant. The simulation results plotted in
Fig. 3 show one of the examples where the
desired force faes = 184.62 N and the actual force
fat = 2500 N.

Case 2: Desired force and actual input force are
both time-varying. The simulation results plotted
in Fig. 4 show one of the examples where the
184.62*cos( @) N and the
t

desired force fues

actual force fax = 250.0%cos( @) N, with ¢
rad.

Case 3: Desired force is constant while actual
input force is time-varying. The simulation results
plotted in Fig. 5 show one of the examples where
the desired force fues = 184.62 N and the actual
force fa = 250.0%cos( @) N, with ¢ = t rad.

In Figs. 3, 4 and 5, the tracking histories of the
first, second, tenth and twentieth repetitions are
plotted against the desire trajectory. The first trial
is the trajectory produced without any knowledge
of the exercise arm’s dynamic property. Repetitions
2 through 20 add the learning control signal to
improve the tracking error when the wrong input
force is applied. The results show that the arm’s
ability in following the desired trajectory improved
with each repetition no matter whether the input
force applied is constant or time-varying.

Maximum error of angular position

a0 is

defined as
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2345

e, (0) (8)

max.r Ie(t )I =max,, oy

Fig. 6 shows the maximum error for the three
cases. The error history shows the maximum
angular position errors reaches approximately 70°
(122 radian), 47° (082 radian), and 64" (1.12
radian) respectively when the desired trajectory is
given as a command to the system with the
learning control turned off,

Root mean square (RMS) error of angular
position #(9 is defined as

l_T[ez(t)dt = iﬁ:ez
\jT o NZ 9

Fig. 7 shows the RMS error for the three cases.

614 /B2 E3E =2 H/A 1248 A 8%,

Figs. 6 and 7 show the monotonic decay of the
errors as functions of time and repetition and the
convergence of the variable e(¢) as the repetitions
progress. The value of e(#) decays very quickly
initially to a relatively small error level and then
decays slowly thereafter. The maximum errors are
between 1.2° (0.021 radian) and 1.3° (0.023
radian) after 20 repetitions. The RMS errors are
between 0.51° (0.0089 radian) and 0.53° (0.0093
radian) after 20 repetitions. The remaining errors
are small enough to be considered as white noise
level.

This indicates that the implemented learning
control scheme guarantees convergence to zero
tracking for both time-varying and
time-invariant systems and does compensate for
the discrepancy between the actual and the
desired input forces. Thus, the learning controller
eliminates all deterministic error in following the
The number of repetitions
needed to learn, however, must be small in
applications. Therefore, the
control should be combined with model-based
control so that any known information on the
robotic arm's dynamic property can be used to

error

desired trajectory.

practical learning

speed up the learning process.
5. Conclusions

In this paper simulations are performed on a
robotic arm for exercise to study the effectiveness
of the learning control methods in this type of
applications. A simple learning controller of D
type with integral control is implemented in
simulation without the knowledge of the dynamic
characteristics of the robotic arm.

The simulation results show reduction in the
tracking error of the robot arm for exercise down
to the reproducibility level of the system. This
decrease in the tracking error of over two orders
of magnitude 10 to 20

repetitions. The simulations reported here indicate

is accomplished after
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that learning control has the potential to

significantly decreases the error in exercise
machine.

Future experiments will develop methods to
know the phase of all error frequency components
to be learned, and then determine the actual
producing high

Future research will also

capability of the method for
precision velocity control.
address the wuse of methods to
bandwidth used in the low-pass filter.

increase the
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