DOI QR코드

DOI QR Code

Crystallization of Ba-ferrite/sapphire(001) Thin Films Studied by Real-Time Synchrotron X-ray Scattering

  • Cho, Tae-Sik (Department of Materials Science and Engineering, Sangju National University)
  • Published : 2002.06.01

Abstract

The crystallization of amorphous Ba-ferrite/sapphire(001) thin films was studied in real-time synchrotron x-ray scattering experiments. In the sputter-grown amorphous films, we found the existence of epitaxial $Fe_3O_4$ interfacial crystallites (50-${\AA}$-thick), well aligned $[0.03^circ$full-width at half-maximum (FWHM)] to the sapphire [001] direction. The amorphous precursor was crystallized to epitaxial Ba-ferrite and \alpha-Fe_2O_3$grains in two steps; i) the nucleation of crystalline \alpha-Fe_2O_3$ phase started at $300^circ{C}$ together with the transformation of the $Fe_3O_4$ crystallites to the \alpha-Fe_2O_3$ crystallites, ii) the nucleation of Ba-ferrite phase occurred at temperature above $600^circ{C}$. In the crystallized films irrespective of the film thickness, the crystal domain size of the \alpha-Fe_2O_3$grains was about 250 ${\AA}$ in the film plane, similar to that of the Ba-ferrite grains.

Keywords

References

  1. J. Appl. Phys v.75 no.5960 J. Appl. Phys T. L. Hylton;M. A. Parker;M. UIIah;K. R. Coffey;R. Umphress;J. K. Howard https://doi.org/10.1063/1.356987
  2. Appl. Phys. Lett v.63 no.1582 Appl. Phys. Lett. X. Sui;M. H. Kryder https://doi.org/10.1063/1.110755
  3. J. Appl. Phys v.81 no.4374 J. Appl. Phys A. Morisako;X. Liu;M. Matsumoto;M. Naoe https://doi.org/10.1063/1.364828
  4. Appl. Phys. Lett. v.70 no.1173 Appl. Phys. Lett. P. C. Dorsey;S. B. Qadri;K. S. Grabowski;D. L. Knies;P. Lubitz;D. B. Chrisey;J. S. Horwitz https://doi.org/10.1063/1.118483
  5. J. Appl. Phys v.75 no.5969 J. Appl. Phys A. Morisako;H. Nakanishi;M. Matumoto;M. Naoe https://doi.org/10.1063/1.355528
  6. Appl. Phys. Lett. v.61 no.867 Appl. Phys. Lett. T. L. Hylton;M. A. Parker;J. K. Howard https://doi.org/10.1063/1.107772
  7. Phys. Rev. Lett v.77 no.3383 Phys. Rev. Lett J. E. Snyder;V. G. Harris;N. C. Koon;X. Sui;M. H. Kryder https://doi.org/10.1103/PhysRevLett.77.3383
  8. IEEE Trans. Magn v.32 no.3819 IEEE Trans. Magn A. Morisako;M. Matsumoto;M. Naoe https://doi.org/10.1109/20.539183
  9. J. Appl. Phys. v.83 no.6250 J. Appl. Phys. E. Suzuki;Y. Hoshi;M.Naoe https://doi.org/10.1063/1.367803
  10. Jpn. J. Appl. Phys. v.38 no.1 Jpn. J. Appl. Phys. T. S. Cho;S. J. Doh;H. Je;D. Y. Noh https://doi.org/10.7567/JJAPS.38S1.444
  11. Appl. Phys. Lett. v.74 no.2050 Appl. Phys. Lett. T. S. Cho;S. J. Doh;J. H. Je;D. Y. Noh https://doi.org/10.1063/1.123753
  12. IEEE Trans. Magn v.28 no.3078 IEEE Trans. Magn E. S. Murdoch https://doi.org/10.1109/20.179719
  13. J. Appl. Phys. v.86 no.1958 J. Appl. Phys. T. S. Cho;S. J. Doh;J. H. Je;D. Y. Noh https://doi.org/10.1063/1.370993
  14. Appl. Phys. Lett v.76 no.303 Appl. Phys. Lett T. S. Cho;J. H. Je;D. Y. Noh https://doi.org/10.1063/1.125727