Evaluation of Vitamin B₆ Status and Korean RDA in Korean College Students Following a Uncontrolled Diet*

Youn-Ok Cho[§] and Young-Nam Kim

Department of Foods & Nutrition, Duksung Women's University, Ssangmun 419, Dobong-Ku, Seoul 132-714, Korea

ABSTRACT

The vitamin B_6 status of 49 healthy college student (women, aged 20-26 y) was estimated for evaluation of vitamin B_6 status and the Korean Recommended Dietary Allowance (RDA) for vitamin B_6 . The average daily vitamin B_6 intake of the subjects was 0.86 ± 0.289 mg/d or $61.43 \pm 24.10\%$ of Korean RDA. The average ratio of vitamin B_6 intake to daily protein intake was 0.014 ± 0.003 mg/g protein. Foods from animal and plant sources provided $34.25 \pm 18.62\%$ and $65.78 \pm 18.72\%$, respectively, of total vitamin B_6 . Plasma pyridoxal 5'-phosphate (PLP) concentration was significantly (p < .01 - p < .001) positively correlated to intakes of all other nutrients except vitamin C. However, no significant correlation was found between plasma PLP and nutrient intake. Vitamin B_6 intake only tended to have a positive correlation with plasma PLP concentration. Plasma total cholesterol was correlated to plasma PLP concentration (p < .05). Plasma PLP had no correlation with levels of glucose, triglyceride, and albumin. These results confirm that the present Korean RDA for vitamin B_6 of 1.4 mg/d based on 0.02 mg/g protein is adequate.

KEY WORDS: vitamin B₆ status, plasma pyridoxal 5'-phosphate, recommended dietary allowance, blood biochemical indices.

INTRODUCTION

Vitamin B₆ is frequently identified as a nutrient of which those even in Western countries¹⁻⁵⁰ get an inadequate supply. Nevertheless, vitamin B₆ deficiencies are rare in Korea. Subclinical vitamin B₆ deficiencies may influence the rate of mental and physical functional deterioration that normally becomes more severe with advancing age. Because vitamin B₆ may be associated with cardiovascular diseases⁶⁰ and may contribute to some neurological disorders⁷¹ and impaired immune function, ^{8,90} the prevention of marginal vitamin B₆ intake and biochemical deficiencies are important for favorable health outcomes.

The present Korean RDA for vitamin B₆ is based on a dietary vitamin B₆ to protein ratio of 0.02 mg/g. ¹⁰ Because there have been few studies of vitamin B₆ status among Koreans, the Korean RDA for vitamin B₆ had to be established on the basis of Western data, which is grounded in Western dietary habits and intake. However, Korean dietary habits and intake are different from those in the West and nutrient requirements are affected by

Accepted: January 18, 2002

§To whom correspondence should be addressed.

physio-cultural factors including race. Also, it is reported that the bioavailability of vitamin B₆ from meat is higher than that from plant-based foods because the bioavailability of vitamin B₆ is incomplete when it is conjugated with β-glucosides.¹¹⁾ The major food sources of vitamin B₆ in Western countries^{1,5)} are meat, whereas the major food sources of vitamin B₆ in Korea are plant-based foods.¹²⁾ Therefore, there might be potential limitations to establishing the Korean RDA on the basis of Western data.

Plasma pyridoxal 5'-phosphate (PLP) concentration is the most frequently used index of vitamin B₆ status in humans and generally reflects vitamin B₆ intake and tissue concentration¹³ because it is the primary form of vitamin B₆ and crosses all membranes under postprandial conditions.¹⁴ The most fundamental, but not necessarily the best, index of vitamin B₆ status may be the amount of the vitamin in a person's diet.¹⁵

The aim of this study, therefore, was to assess the vitamin B₆ status of Koreans, to evaluate the present Korean Recommended Dietary Allowance (RDA) for vitamin B₆ and observe any interrelation between plasma PLP concentration and blood biochemical indices.

SUBJECTS AND METHODS

1. Subjects

Forty-nine young women, all college students with no

^{*}This study was supported by 2001 Research fund of Institute of Natural Science Research, Duksung Women's University.

Table 1. Anthropometric measurements of the subjects

Category	Mean \pm SD
Age (yrs)	21.94 ± 0.58
Height (cm)	161.86 ± 3.81
Weight (kg)	51.11 ± 5.71
BMI ¹⁾ (kg/m ²)	19.49 ± 1.78
PIBW ²⁾ (%)	90.13 ± 10.32

- 1) Body mass index = Weight (kg)/Height (m)²
- 2) Percent ideal body weight = Body weight/Ideal body weight \times 100

health problems, participated in this study. The subjects were taught and tested on the exact food portions to be taken under this study. The ages of the subjects ranged from 20 to 26. Characteristics of the subjects are given in Table 1.

2. Dietary intake and anthropometric data

Three-day recall method was used to record the standard dietary intake of the subjects: two days during the week, one day on the weekend. Food portion sizes used were based on published average portion sizes. ^[6] Dietary intake was converted using a computerized dietary analysis program^[7] and was based on data pertaining to the vitamin B₆ content of foods cited in Korean Food values^[6] and USDA agriculture handbooks. ^[8] Intakes of vitamin B₆ and nutrients were evaluated in accordance with the Korean RDA for the appropriate age group. ^[6] On the day's worth of dietary data, weights and heights were reported and body mass index (BMI) was calculated.

3. Biochemical measurements

After a 12-hour fast, venous blood was used for the assessment of vitamin $B_{\rm o}$ status and biochemical indices. Immediately following blood drawing in heparinized vacutainer, blood was centrifuged at 3000 rpm for 15 min to separate the plasma. The plasma was stored at $-20\,^{\circ}\mathrm{C}$ in aliquots until analyzed.

Plasma PLP concentration was measured using the HPLC method, which was modified as follows: Mobile phase (0.1M potassium dihydrogen phosphate containing 0.1M sodium perchlorate, 0.5 g/L sodium bisulfite, pH 3) was pumped at a flow rate of 1.0 ml/min into the column (Bondapack ODS column, 3.9 300 mm, 10 µm porus packing, C18, Waters). Plasma was added to perchrolic acid (0.8M) and allowed to sit for one hour to release PLP from protein. This mixture was then centrifuged (18000 rpm, 4°C, 15 min) and supernatent removed. One hundred µl of supernatant was loaded in the sample loop and then injected into the column. Samples for vitamin B₆ analysis were prepared under yellow fluorescent lighting to prevent photodegradation of the vitamers. ²⁰

Table 2. Daily nutrient intake of the subjects

Nutrient	Mean \pm SD	% of Korean RDA ¹⁾
Energy (Kcal)	1675.98 ± 334.22	83.80%
Carbohydrate (g)	248.57 ± 50.21	
Protein (g)	62.04 ± 16.07	112.78%
Animal protein	30.58 ± 11.14	
Plant protein	31.45 ± 7.76	
Fat (g)	48.22 ± 12.99	
Animal fat	26.78 ± 8.07	
Plant fat	25.60 ± 11.47	
Cholesterol (mg)	252.47 ± 115.87	
Calcium (mg)	434.42 ± 117.89	62.06%
Phosphorus (mg)	927.59 ± 222.33	132.51%
Iron (mg)	9.37 ± 2.54	58.56%
Sodium (mg)	3828.42 ± 1176.61	
Potassium (mg)	2123.37 ± 565.66	
Vitamin A (RE)	623.89 ± 238.02	89.13%
Vitamin B ₁ (mg)	1.12 ± 0.36	112%
Vitamin B ₂ (mg)	1.04 ± 0.30	86.67%
Vitamin B ₆ (mg)	0.86 ± 0.29	61.43%
Niacin (NE)	13.13 ± 4.27	101%
Vitamin C (mg)	93.96 ± 67.27	134.23%

1) Recommended Dietary Allowances for Koreans, 7th Revision, 2000

The levels of plasma total protein, albumin, total cholesterol, triglyceride, and glucose were measured using an autoanalyzer (Vitalab Eclipse Plus, MERCK).

4. Statistical analysis

The statistical analysis was carried out using the Statistical Analysis System. Pearson's correlation coefficient was used to determine possible relationships among the indices of vitamin B_6 status and blood biochemical indices. Values for vitamin B_6 status were regressed based on vitamin B_6 intake and dietary vitamin B_6 to protein ratio.

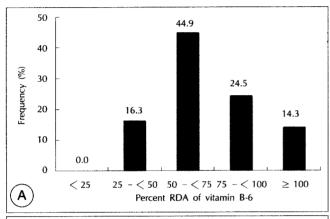

RESULTS


Table 2 shows the nutrient intake expressed as a percentage of Korean RDA. The nutrient intakes of the subjects were 58.56-134.23% of Korean RDA. The estimated average daily intake of vitamin B_6 for the subjects was 0.860 ± 0.289 mg/d (mean \pm SD), ranged from 0. 384 to 1.732 mg/d and was $61.43 \pm 24.10\%$ of Korean RDA. Table 3 lists the total daily vitamin B_6 , mg vitamin $B_6/1000$ kcal, mg vitamin B_6/g dietary protein intake and percentage of Korean RDA of vitamin B_6 for the subjects. The daily vitamin B_6 intake from plant and animal sources for the subjects expressed as a percentage of the total is also shown in Table 3. Foods from animal and plant sources provided $34.25 \pm 18.62\%$ and $65.78 \pm 18.72\%$, respectively, of total vitamin B_6 intake.

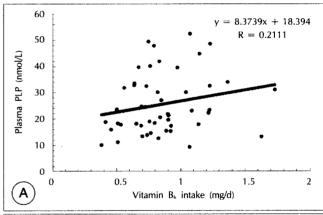
Table 3. Dietary vitamin B₆ intake of the subjects

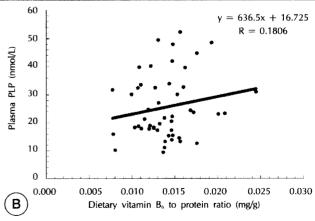
	Mean ± SD	Range
Vitamin B ₆ per day (mg/d)	0.860 ± 0.289	0.384 - 1.732
Vitamin B ₆ per 1000 kcal (mg/1000 kcal)	0.509 ± 0.115	0.291 0.830
Vitamin B ₆ per g protein (mg/g protein)	0.014 ± 0.003	0.008 - 0.024
Percent of RDA (%)1)	61.43 ± 24.10	27. 42 - 123. 71
Vitamin B ₆ form plant foods (%)	65.78 ± 18.72	41. 66 - 87. 16
Vitamin B ₆ form animal foods (%)	34.25 ± 18.62	12. 84 - 58. 34

¹⁾ Recommended Dietary Allowances for Koreans, 7th Revision, 2000

Fig. 1. Weighted frequency distribution of vitamin B-6 intakes: % of RDA (A), mg/g protein (B).

Fig. 1 shows the frequency distribution of vitamin B_6 intake as a percentage of Korean RDA (A) and relative to daily protein intake (B), respectively. 14.3% of all subjects had intakes 100% of RDA for vitamin B_6 . Approximately 16.3% of subjects had estimated intakes < 50% of RDA. As for vitamin B_6 to protein ratio, 63.3% of subjects fell within a range of 0.01-0.015 mg vitamin B_6 /g protein, 22.5% of subjects were within 0.015-0.02, 8.2% of subjects showed less than 0.01 and only 6.1% of subjects showed more than 0.02 on the survey day.


There were correlations among the indices of vitamin B_6 status and nutrient intake (Table 4). As expected, vi-


Table 4. Correlation among the indices of vitamin B_{ϵ} status and nutrient intake per day of the subjects

Nutrients	Vitamin B ₆ intake (mg)	Plasma PLP (nmol/L)
Energy (Kcal)	0.74349*** (0.0001)1)	0.10221 (0.4847)
Total protein (g)		
Animal (g)	0.63830*** (0.0001)	0.09539 (0.5144)
Vegetable (g)	0.54347*** (0.0001)	0.11380 (0.4362)
Total fat (g)		
Animal (g)	0.49714*** (0.0003)	0.00193 (0.9895)
Vegetable (g)	0.44230** (0.0015)	0.14688 (0.3139)
Carbohydrate (g)	0.65395*** (0.0001)	0.11148 (0.4457)
Ca (mg)	0.37305** (0.0083)	0.15971 (0.2730)
P (mg)	0.66892*** (0.0001)	0.12619 (0.3879)
Fe (mg)	0.68129*** (0.0001)	0.20951 (0.1485)
Na (mg)	0.58189*** (0.0001)	0.06473 (0.6586)
K (mg)	0.67308*** (0.0001)	0.10187 (0.4861)
Vitamin A (RE)	0.38494** (0.0063)	0.07851 (0.5918)
Vitamin B ₁ (mg)	0.69591*** (0.0001)	0.12383 (0.3966)
Vitamin B ₂ (mg)	0.50014*** (0.0001)	0.08339 (0.5689)
Vitamin B ₆		0.21111 (0.1454)
Niacin (NE)	0.79845*** (0.0001)	0.06944 (0.6354)
Vitamin C (mg)	0.20944 (0.1486)	0.00618 (0.9664)
Cholesterol (mg)	0.37201** (0.0085)	0.04741 (0.7463)

¹⁾ p-value

^{***:} significant at p < 0.001

Fig. 2. Linear regression analysis of plasma pyridoxal 5'-phosphate (PLP) concentration vs. vitamin B_6 intake (A) and the dietary vitamin B_6 to protein ratio (B) for the subjects.

^{*:} significant at p < 0.05, **: significant at p < 0.01

Table 5. Correlation between plasma PLP concentration and biochemical values of the subjects

	Plasma PLP (nmol/L)	
Total protein (g/dl)	0.27728 (0.0621)1)	
Glucose (mg/dl)	0.02990 (0.8436)	
Triglyceride (mg/dl)	0.19093 (0.2037)	
Albumin (g/dl)	0.03542 (0.8152)	
Total cholesterol (mg/dl)	0.32017* (0.0301)	

¹⁾ p-value

tamin B_6 intake had a positive correlation with all other nutrients except vitamin C. Among major nutrients, protein, fat, and carbohydrate intake had a strong positive correlation with vitamin B_6 intake (p < 0.001). Also, among micronutrients, phosphorous, iron, sodium, potassium, vitamin B_1 , vitamin B_2 and niacin had strong positive correlations with vitamin B_6 intake (p < 0.001). However, no significant correlation was found between plasma PLP concentration and nutrient intake. Vitamin B_6 intake only tended to have a positive correlation with plasma PLP concentration (r = 2.1111, p = 0.1454). Linear regression analysis of plasma PLP concentration vs. vitamin B_6 intake (A) and dietary vitamin B_6 to protein ratio (B) are given in Fig. 2, respectively.

Table 5 shows the correlation between plasma PLP concentration and biochemical values. Plasma total cholesterol was only correlated to plasma PLP concentration (p < 0.05). There was a tendency toward a positive correlation between levels of plasma PLP and total protein. Plasma PLP had no correlation with levels of glucose, triglyceride, and albumin.

DISCUSSION

This study provides the data for evaluation of vitamin B₆ status and RDA in Korean women. Vitamin B₆ requirement studies being done in Western countries have some limitation to apply on the Korean requirement for vitamin B₆ because Korean dietary habits and intake are different from those of the Western and nutrient requirements are affected by physio-cultural factors including race. Vitamin B₆ intake and the status of the subjects in this study consumed uncontrolled, usual diet, whereas there are many previous studies ^{5)21 25)} about vitamin B₆ requirement and status of women in which subjects consumed a controlled diet containing various levels of vitamin B₆.

The Korean RDA for vitamin B_6 , based on a dietary vitamin B_6 to protein ratio of 0.02 mg/g,¹⁰ for women aged 20-26 y (1.4 mg/d) is a little higher than those in

other countries: 1.3 mg/d in the US,²⁶ 1.2 mg/d in the UK,²⁷ 1.2 mg/d in Japan,²⁸ and 0.9-1.4 mg/d in Australia. ²⁹ In this study, the average vitamin B₆ intake of Korean women was 0.860 ± 0.289 mg/d, which was lower than 1.18 and 1.11 mg/d for young white and black women aged 12-34 y, respectively, in the NHANES [].² The average ratios of vitamin B₆ to daily protein intake were 0.014 ± 0.003 mg/g protein, which was lower than in the NHANES [] (0.019 and 0.018 mg/g dietary protein for young white and black women, respectively).

Because it is well established that the requirement for vitamin B₆ increases as dietary protein increases, 30(31) the ratio of vitamin B₆ to protein was used to determine the vitamin B6 requirement in this study. If the average intake is the amount needed to prevent clinical signs of vitamin B₆ deficiency and because the subjects showed no clinical signs of vitamin B63, then based on the results of this study, a vitamin B₆ intake of 0.86 mg/d (0.014 mg/g protein) should be adequate for women. However, adding a margin of the safety to account for bioavailability concerns and to cover variance in the requirements of individuals would raise the vitamin B6 RDA of young women. The Korean RDA for vitamin B₆ is based on the amount needed to satisfy 97.5% of the population. Adding two SD to the estimated average requirement (EAR) would mean 1.4 mg/d, 0.02 mg/g protein would be the intake required. Further support for adding two SD comes from the major food sources of vitamin B6. The young women in this study obtained 65.78% of vitamin B₆ from plant sources, whereas in the NHANES II approximately one-half of dietary vitamin B₆ was reported to come from meat and one-half from plant-based foods.

The Dietary Reference Intakes Committee based their recommendation on the fact that a PLP concentration of 20 nmol/L was chosen as the standard for adequate status.26) Also, Leklem et al.14)23) determined an acceptable value of 30 nmol/L for plasma PLP concentration, considering this adequate. In this study, linear regression calculation (Fig. 2) using the average of vitamin B₆ intakes and dietary vitamin B₆ to protein ratios predicted adequate plasma PLP concentration of 25 nmol/L. This line of support for 1.4 mg/d is provided by the results of the plasma PLP levels of the subjects. The amount of vitamin B₆ intake in subjects whose PLP levels were higher than 25 nmol/L was 0.944 mg/d, 0.014 mg/g protein. Thus, adding two SD (0.003 mg/g protein) to EAR(0.014 mg/ g protein), 0.02 mg/g protein would be adequate for RDA. These results confirm that the dietary vitamin B₆ to protein ratio of 0.02 mg/g is sufficient to produce

^{*:} significant at p < 0.05

plasma PLP values indicative of adequate vitamin B_{δ} in voung Korean women.

According to the results presented in Table 4, there were positive correlations between vitamin B6 intake and those of other nutrients except vitamin C. There was only a tendency for a positive correlation between plasma PLP concentration and vitamin B₆ intake. As in other studies that have assessed the vitamin B6 requirement, this study found a significant correlation between plasma PLP concentration and vitamin B₆ intake.²¹⁻²⁵⁾ These studies were done using a controlled diet, in which a fixed menu was provided and there were various levels of vitamin B₆, whereas the present study was done using an uncontrolled, usual diet in which a relatively lower vitamin B₆ amount was provided. Thus, the bioavailability of vitamin B₆ might be higher with lower intakes of vitamin B₆ and effectively converted to PLP. The evidence for this hypothesis is drawn from the results of Huang JC et al.23) which showed relatively higher plasma levels at a lower vitamin B₆ intake period. The lack of correlation between dietary intake and biochemical measurements may be the result of the sample size. Sharon M Madigan et al., 32) for example, showed no significant correlation between plasma PLP and vitamin B6 intake in a sample of 62 elderly people, but van der Wielen et al. 33) reported a positive association between plasma PLP and vitamin B₆ intake in 546 elderly Europeans.

Between plasma PLP concentration and biochemical values, total cholesterol only had a significant correlation with plasma PLP concentration. In a study of the rhesus monkey,34 there was a negative correlation between plasma PLP and total cholesterol level, whereas there was a positive correlation in this study. Meat may be a major source of vitamin B6 and a major source of saturated fat and cholesterol at the same time, because the vitamin B, content of meat is higher than that of plant-based foods and the bioavailability of vitamin B₆ from animal sources is known to be better than that of vitamin B6 from plant sources. Therefore, the vitamin B6 status of subjects deriving more vitamin B₆ from animal foods may be good, but the subjects may ingest more cholesterol and animal fat. As a result, it may be presumed that there is a positive correlation between plasma PLP and total cholesterol. Thus, the population that is vulnerable to higher blood cholesterol levels needs to take EAR rather than the RDA.

In conclusion, the results of this study confirm that the present vitamin B₆ RDA of 1.4 mg/d (0.02 mg/g protein) for young Korean women is adequate, adding a mar-

gin of safety to account for bioavailability differences and variances in the requirements of individuals.

Literature cited

- Donald EA. Nutritional aspects of vitamin B₆. In Dolphin D, Poulson, Avramovic O eds. Vitamin B₆, pyridoxal phosphate, chemical, biochemical and medical aspects. pp.477-506, New York: John Wiley and Sons, 1986
- 2) Kant AK, Block G. Dietary vitamin B₆ intake and food sources in the US population: NHANES II, 1976-1980, Am J Clin Nutr 52: 707-16, 1990
- Heiskanen K, Kallio M, Salmenpera L, Simes MA, Ruokonen I,
 Perheentupa J. Vitamin B₆ status during childhood: Tracking from 2 months to 11 years of age. J Nutr 125: 2985-92, 1995
- 4) Lowik MH, VanpPoppel G, Wedel M, Berg HVD, Schrijver J. Dependence of vitamin B₆ status assessment on alcohol intake among elderly men and women (Dutch Nutrition Surveillance System). J Nutr 120: 1344-51, 1990
- 5) Kretsch M, Sauberlich HE, Skala JH, Hohnson HL. Vitamin B₆ requirement and status assessment: young women fed a depletion diet followed by a plant- or animal-protein diet with graded amounts of vitamin B₆. Am J Clin Nutr 61: 1091-101, 1995
- 6) Willett WC. Does low vitamin B₆ intake increase the risk of coronary heart disease? In: Reynolds RD, Leklem JE, eds. Vitamin B₆: its role in health and disease. pp.337-46, New York: Alan R Liss, 1985
- Read MH, Graney AS. Food supplement usage by the elderly. J Am Diet Assoc 80: 250-3, 1982
- 8) Merrill AH, Henderson JM. Diseases associated with defects in vitamin B₆ metabolism or utilization. *Annu Rev Nntr* 7: 137-56, 1987
- 9) Talbott MC, Miller LT, Kerkvliet NI. Pyridoxine supplementation: effect on lymphocyte responses in elderly person. *Am J Clin Nutr* 46: 659-64, 1987
- The Korean Nutrition Society. Recommended dietary allowances for Koreans, 7th ed, Jungang Moonhwasa, Seoul, 2000
- 11) Trumbo PR, Gregory JF, Sartain DB. Incomplete utilization of pyridoxine-β-glucoside as vitamin B₆ in the rat. J Nutr 118: 170-5, 1988
- 12) Youn-Ok Cho, Young-Nam Kim. Dietary intake and major dietary sources of vitamin B₆ in Korean young women. *Nutritional Sciences* 4: 20-5, 2001
- 13) Bitsch R. Vitamin B₆. Int J Vitam Nutr Res 63: 278-82, 1993
- 14) Leklem JE. Vitamin B₆: A status report. J Nutr 120: 1503-7, 1990
- 15) Reynolds RD. Determination of dietary vitamin B-6 intake: is it accurate? *J Am Diet Assoc* 90: 799-801, 1990
- Korean Dietetic Association. Food exchange list. Korean Dietetic Association, Seoul, 1995
- 17) Korean Nutrition Society. Computer Aided Nutritional analysis

- program for professionals. A-pack Intelligence, Seoul, 1998
- 18) Human Nutrition Information Service, US Department of Agriculture. Composition of foods. Agriculture handbooks 8-1-8-21. Washington, DC: US Government Printing Office, 1976-1988
- 19) Kimura M, Kanehira K, Yokoi K. Highly sensitive and simple liquid chromatographic determination in plasma of B₆ vitamers, especially pyridoxal 5'-phosphate. *J chromatography* A 722: 295-301 1996
- 20) Ang CYW. Stability of three forms of vitamin B₆ to laboratory light conditions. *J Assoc Off Anal Chem* 62: 1170-3, 1979
- 21) Hansen CM, Leklem JE, Miller LT. Vitamin B₆ status of women with a constant intake of vitamin B₆ changes with three levels of dietary protein. *J Nutr* 126: 1891-901, 1996
- 22) Hansen CM, Leklem JE, Miller LT. Changes in vitamin B₆ status indicators of women fed a constant protein diet with varying levels of vitamin B₆. Am J Clin Nutr 66: 1379-87, 1997
- 23) Hansen CM, Shultz TD, Ho-Kyung Kwak, Memon HS, Leklem JE. Assessment of vitamin B₆ status in young women consuming a controlled diet containing four levels of vitamin B₆ provides an Estimated Average Requirement and Recommended Dietary Allowance. J Nutr 131: 1777-86, 2001
- 24) Hansen CM, Leklem JE, Miller LT. Vitamin B₆ status indicators decrease in women consuming a diet high pyridoxine glucoside. J Nutr 126: 2512-8, 1996
- 25) Huang JC, Chen W, Evans MA, Mitchell ME, Shultz TD. Vitamin B₆ requirement and status assessment of young women fed a high-protein diet with various levels of vitamin B₆. Am J Clin Nutr 67: 208-20, 1998
- 26) Institute of Medicine. DRI Reference intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin,

- and Choline. National Academy Press, Washington, DC, 1998
- 27) Report on Health and Social Subjects: no.41, Dietary reference values of food energy and nutrients for the United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy. London: Her Majesty's Stationery Office, 1991
- 28) Health Service Bureau, Ministry of Health and Welfare. Recommended Dietary Allowances for the Japanese, 6th rev, Health and Nutrition Division, 1996
- 29) National Health and Medical Research Council. Recommended Dietary intakes for use in Canada, Canberra, 1991
- 30) Linkswiler HM. Vitamin B₆ requirements of men. In: Vitamin B₆ requirements. pp.279-90, Washington DC: National Academy of Science, 1978
- 31) Miller LT, Leklem JE, Schultz TD. The effect of dietary protein on the metabolism of vitamin B₆ in humans. *J Nutr* 115: 1663-72, 1085
- 32) Sharon M Madigan. Fergal Tracey, Helene McNulty, Jill Eaton-Evans, James Coulter, Hilary McCarteny, JJ Strain. Riboflavin and vitamin B₆ intakes and status and biochemical response to riboflavin supplementation in free-living elderly people. Am J Clin Nutr 68: 389-95, 1998
- 33) van der Wielen RPJ, de Groot LCP, van Staveren WA. Dietary intake of water soluble vitamins in elderly people living in a Western Society (1980 1993). *Nutr Res* 14: 605-38, 1994
- 34) Rinehart JF, Greeberg LD. Vitamin B₆ deficiency in the rhesus monkey with particular reference to the occurrence of atherosclerosis, dental caries, and hepatic cirrhosis. Am J Clin Nutr 4: 318-28, 1956