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AN ASYMPTOTIC FORMULA FOR exp(l%x)
JUNHO SONG AND CHANGWOO LEE

ABSTRACT. We show that G(x) = e*/!! ™) — 1 is the exponential
generating function for the labeled digraphs whose weak compo-
nents are transitive tournaments and derive both a recursive for-
mula and an explicit formula for the number of them on n vertices.
Moreover, we investigate the asymptotic behavior for the coeffi-
cients of G(z) using Hayman’s method.

1. Introduction

When we know the exponential generating function G(z) for a class
of graphs, we can easily derive the exponential generating function C(x)
for the corresponding connected graphs using the relation

14 G(z) =@,
This is a well-known technique in graph theory [1].
Let us try in the reverse direction, from C(z) to G(z). The most
common power series
1
11—z
is, in some sense, meaningless as an ordinary generating function. How-

ever, we can make it meaningful as an exponential generating function.
This means that the series

—l=z+z2+23 + 2+

1 T
C(x)zl—a:_ :l—m
22 i 4
— | - 1= -
~x+2.2! +3.3! —|—4.4! +
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could be regarded as the exponential generating function for labeled
transitive tournaments in graph theoretical sense [3]. From this fact, we
know that the exponential generating function
G(z) = @) — 1 =2/ _1
2 3 4 5 6
x z x x x
counts labeled digraphs whose weak components are transitive tourna-
ments.
In this paper, we show that a recursive formula for the coeflicient a,,
of the term z"/n! in G(z) is
an = (2n — 1)apn-1 — (n—1)(n — 2)ap_o for n>3
with the initial condition
a1 =1 and ag =3,

in two different ways and that an explicit formula for a, is

an = 75:1 <Z) (n— L)k,

k=0
where (n — 1) means a falling factorial. Moreover, we show that an
asymptotics for a,, is

2" exp(—n+ $V/An + 1 - 3)

e+ 1- Vin t )r(dn + 1)1/4
2. Formulas for a,

In this section we derive a recursive formula for a, in two different
ways and next an explicit formula for a,,.

First, differentiating y = ¢®/(1=%) — 1 and rearranging it, we have a
differential equation

1-2)% =y+1, y(0) = 0.
Solving this equation for y =} -, (an/n!)z™, we get a recursive formula
an = (2n—1ap_1 — (n—1)(n—2)ap—2 for n>3
with the initial condition
a1 =1 and ag =3,

as is evidenced by enumerating labeled digraphs under consideration for
small n.
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Another method to derive this recursive formula is as follows. Let

" z
Zan—' = exXp .
n! 1l—2

n>0

Taking the logarithm of both sides of this equation, we have

" T
log ZG”ET :l~x'

n>0

Differentiating both sides and multiplying through by z, we have

Y >0 Nan{z™/nl) z

ano an(zn/nl) (1 -1z)?

Clear this equation of fractions. For each n, find the coefficients of 2™ /n!
on both sides of the equation and equate them. Ignoring ¢g = 1 from
the fact that we do not consider digraphs on zero vertices, we get the
same recursive formula.

To find a, itself, we regard the function e?/1=2) as a complex func-
tion. Let

z _ [
eXp(1~z>—Zn!z'

Then, by Cauchy’s formula, we have

an 1 eZ/(l*‘Z)
n_ L / AR
nl 27w Jo 2ntl

1 e

= 57_;2, ey (1 +w)" tdw

e? _
:2— x27rz><Res[ S+ w)”? 1;0]

(e
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where z/(1 —2) =w, C: re withO0<r <1and0<8<2r and T is
the circle corresponding to C. Therefore, we have

k=0

n—1
= Z (Z)(n—l)k for n>1.
k=0

THEOREM 1. Let a, be the number of labeled digraphs of order n
whose weak components are transitive tournaments. Then
(1) an = (2n — Vap—1 — (n — 1)(n ~ 2)a,—2 for n > 3 with the initial
condition %1 =1 and ag = 3.
(2) an = 3520 (3){n = L.

3. Asymptotics for a,

In this section we want to investigate the asymptotic behavior for the
coefficients of 1 + G(z) = exp(;%;), that is, to find a simple function
of n that affords a good approximation to the values of our coefficients
when n is large.

To do this, we let f(z) = exp(1Z;) and apply Hayman’s method for
this f(z). Now, we introduce the admissibility for Hayman’s method
and the method itself.

DEFINITION 2. [2, 4] Let f(2) = 3,50 @n2" be regular in |z| < R,
where 0 < R < 0o. Next define two auxiliary functions

_ o)
“O =50

and
b(r) =ra'(r).

We say that f(z) is admissible in |z] < R if

(a) there exists an Ry < R such that f(r) > 0 for Ry < r < R,

(b) there exists a function &(r) defined for Ry < r < R such that
0 < 6(r) < m for those 7, and such that uniformly for || < é(r),
we have

f(rew) ~ f(r)eiea(r)—%e%(r) as r — R,
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(c) uniformly for §(r) < |f| < w, we have

a0y _ olf(r))
f(re®”) = 0

(d) we have b(r) — oo as r — R.

r — R,

LEMMA 3. ([2]) Suppose that f(z) =}, 5 an2" is regular in |2| < 1,
positive in some range Ry < z < 1, and that there exist constants 0 < a,
0 < B < 1, and a positive function C(r), 0 < r < 1, satisfying

C'(r)
(3.1) (1—7’)0—(75—»0 as r—1,
and such that
(3.2) log f(2) ~C(|z)(1 —2)"% as z-—1,

uniformly for |arg z| < B(1 —r).
Suppose further that for r sufficiently near 1, we have
(33)  1fre”) < |frePU)] for f1L-7) <16 <.
Then f(z) is admissible in |z| < 1.
LEMMA 4. ([2, 4]) Let f(2) = >_,>0an2" be an admissible function
in |z| < R and let the function a(r) be positive increasing in some range

ro < 1 < R. Let r, be the positive real root of the equation a(rp) =n
for each n =1,2,3,... such that rqo < r, < R. Then

gy~ Al
"y /2nb(r,)

LEMMA 5. Let

f(z) =exp(;7—) = Y 22"

1—2z 0
Then f(z) is admissible in |z| < 1.

PROOF. Since f(z) = exp(:%5) =¢ ! - exp(—l—i;), it suffices to show
that g(z) = exp(+X;) is admissible in |z| < 1 [2]. To do this, we apply
Lemma 3 for g(z).

We note that g(z) is regular in |z] < 1 and that g(r) is positive for
0 <r < 1. Let us take o = 1, § any number in between 0 and 1, and
C(r) =1for 0 < r < 1. Then, clearly, the conditions (3.1) and (3.2) are
satisfied.
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We want to check the condition (3.3). Since

’ g(re) exp(1/(1 — rei?)) '
g(reB0-7)| ~ [exp(1/(1 — reP0—"))

1 1
FP\1=re# ~ 1-refl-n )|’

it is enough to show that

1 1
— — <
R (1 —re?? 1 reiﬂ(l_”)> =0

for B(1 —r) < |0| < 7 and r sufficiently near 1. Actually, we have

1 1
R (1 —re® 11— reiB(l‘T))

_ (1 —7)(1+r)(cosf — cos (1 — 7)) <0
(1 —2rcosf+72)(1—2rcosB(1 —r)+7r2) ~
for (1 —7) < |0] < 7 and r sufficiently near 1. Therefore, the condition
(3.3) is satisfied. =

Now we want to state an asymptotics for the coefficient a,, in f(z) =
exp(i%) = ano a2

THEOREM 6. Let a, be the number of labeled digraphs of order n
whose weak components are transitive tournaments. Then

2" exp(—n+ 3vVAn +1-—3)
Ay, ~ .
(2n + 1 — An + 1)"(4n + 1)1/4
PROOF. Since we already showed in Lemma 5 that f(z) is an admis-

sible function in |z| < 1, we may apply Lemma 4 for f(z).
First, we note that f(2) is regular in |z| < 1, and have

olr) =
b(r) = %%’)"—3

Since a(r) is positive increasing for —1 < r < 1, we let r, be the
solution of the equation a(r,) = n for positive integer n such that 0 <
r, < 1. In this case, the equation is

n

T "
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and thus our solution is

1+ ! 1+ L
Ty = — g,
" 2n n  4n?

Therefore, we have

oo = s (LT 1)

and

n+1—+v4Adn+1
b = ~ nvin + 1.
(ra) =n Vin+1—1 "

Using the formula in Lemma 4, we have
G (2n)" exp (5V4n +1 - 3)
" an+1- Van +1)"/2nnAn £ 1.
Finally, using Stirling’s formula, we have
2"n2" exp (—n + %\/W — %)
T @l - VInFD)r(dn  DUA .

(3.4)

The last column of the following table shows the speed of convergence
for our estimator.

n (3.4) an (3.4)/an
200 | 4.9013x10%%*  4.8376x10%%  1.0132
400 | 2.8943x10%3  2.8676x10883  1.0093
600 | 3.3829x 101426 3.3573x 101426  1.0076
800 | 3.2480x101%%  3.2267x10'%98  1.0066
1000 | 1.1381x 107592 1.1314x10%592  1.0059
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