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ON STATIONARITY OF NONLINEAR AR
PROCESSES WITH NONLINEAR ARCH ERRORS

OESOOK LEE AND MINHEE KIM

ABSTRACT. We consider the nonlinear autoregressive model with
nonlinear ARCH errors, and find sufficient conditions for the ex-
istence of a strictly stationary process. New results are obtained,
and known results are shown to emerge as special cases.

1. Introduction

The typical p-th order nonlinear AR-model is given by

Yt = ¢(yt~17 Yt—2,- 7yt~p) + e,

where {e;} are independent and identically distributed (i.i.d.). While
this model has constant variance, many types of economics and finan-
cial data possess the property that their conditional variances depend on
the past information. To explain the time series with conditional het-
eroscedastic variances, ARCH (autoregresive conditional heteroscedas-
ticity) process was introduced by Engle (1982). ARCH model has been
proved useful in financial applications and studied by many authors, for
instance, Bollerslev et al (1992), Guégan and Diebolt (1994), Lu (1996),
Li and Li(1996), An et al (1997), Wong and Li(1996), Ling (1999),
Borkovec (2000) etc. As an extension of ARCH process, a class of au-
toregressive model with ARCH errors proposed first by Weiss (1984), and
Tong (1990) suggested a threshold model with an ARCH error, which is
entitled the SETAR-ARCH model. However, some data show that lin-
earity of the squared past disturbances in ARCH models is not adequate
and the conditional variance is asymmetric conditional on previous re-
turns (see, e.g., Rabemanjara and Zkoian (1992), Liu et al (1997)). In
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order to accommodate the asymmetric conditionality of conditional vari-
ance, double threshold ARCH model was introduced in Li and Li (1996).

In this paper, we consider the nonlinear AR models with nonlin-
ear ARCH innovations, which is a natural extension of double thresh-
old ARCH model. This model combines the advantages of nonlinear
AR models which target on the conditional means given the past and
nonlinear ARCH model which concentrate on the conditional variances
given the past. That is, this model is capable of modeling time series
with changing conditional mean and conditional variance via nonlinear
manners.

Let {y:} be the nonlinear autoregressive time series with nonlinear
ARCH errors given by

(1.1) Ut = P(Ys—1,Ye—2, ** + Yt—p) + €,
(1.2) & = htl/zet,
(1.3) he = ap + Y(Et—1,€t-2, 1 Et—q),

where ¢ and 9 are real-valued measurable functions defined on RP and
R4, respectively, p > 0, ¢ > 0, ap > 0, and {e;} is a sequence of i.i.d
random variables with mean zero and unit variance.

The process obtained by (1.1)-(1.3) includes various well known non-
linear models such as nonlinear AR models with constant variance, TAR,
(6—) ARCH, double threshold ARCH models etc. Our aim is to derive
sufficient conditions for the stationarity and finiteness of the moments
of a model given above. We study the stationarity of y; by applying
the Tweedie’s result (1988) to associated Markov process and derive the
desired results from that for Markov chain.

For terminologies and relevant results in Markov chain theory, we
refer to Meyn and Tweedie (1993).

Section 2 presents main results and their proofs are given in Section
3.

2. Main results

Consider the following nonlinear autoregressive model with nonlinear
ARCH errors;

(2.4) Yy = OWe-1,  Ye-p) T &t

(2.5) g = Vhe-es

(26) ht = ag+ 77/)(675—17 o 75t——q),
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where ¢ and 1 are real-valued measurable functions on RP and RY re-
spectively, ¥ > 0, ag > 0, {e;} is a sequence of i.i.d. random variables
with mean 0 and variance 0? = 1, and {yg,y_1, ---, Yopt1l> €05 *° "
€_q+1} are arbitrarily specified real-valued random variables indepen-
dent of {est > 1}.

Denote X; = (yz, -+, Yt—p+1» € **» Et—q+1), then {Xyt > 0}
is a Markov chain with the n-step transition probability function, say
P (x,dy).

We make the following assumptions:
(A-1) There exist constants A, 0 < A < 1, and ¢; such that for
u=(ui, - ,up) € RP,

(2.7) |$(w)] < Amax{lui],- -, upl} +c1.

(A-2) There exist constants v; > 0, ¢ =1,--- ,¢q with Y7 ;v <1
and ¢ such that for z = (2, ,2,)" € RY,

q
(2.8) Vi(z) < Z’)’ilzil + c3.
i—1

(A-3) There exist constants v; > 0,4 = 1,--- ,¢g with Y7 ;7 < 1
and ¢y such that for z = (21, , z4)’ € RY,

g
(2.9) Y(z) < Z 'yizi2 + co.
=1

(A-4) {X;} is a Feller chain, i.e. for each bounded continuous func-
tion g on RP*9, E[g(Xi+1) | X¢ = x] is continuous in x.

Followings are our main results.

THEOREM 1. Under the assumptions (A-1), (A-2), and (A-4), there
exists a stationary solution (y:,e;) satisfying (2.4)-(2.6), and Eqr, (ly:|)
and Er,(|e:|) are finite where m; and my are stationary distributions of
{y:} and {g;}, respectively.

THEOREM 2. Assume (A-1), (A-3), and (A-4). Then a stationary
solution of (2.4)-(2.6) exists and Ex, (|y:]) < 0o and Ey,(g2) < oo.

THEOREM 3. In addition to the assumptions (A-1), (A-2) (or (A-
3)) and (A-4), suppose that the Markov chain {X,} is aperiodic and
p-irreducible. Then {X;} is geometrically ergodic.
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We now give some examples. In each case, corresponding Markov
chain is assumed to be a Feller chain, if necessary.

ExampLE 1. The classical nonlinear autoregressive model with order
p is given by
(2.10) vt = P(ys—1,- - ayt—p) + e

with nonlinear measurable function ¢ : RP — R. Above model has been
studied by many authors, for example, Bhattacharya and Lee (1995),
An et al (1997), Tong (1990), Tjgstheim (1990), Lee (2000) etc. Taking
g = 01in (2.6) yield (2.10). The existence of strictly stationary solution
of (2.10) is ensured provided that for some A < 1,

(2.11)  [é(y)| < Amax{|yil, -+, 1ypll, ¥ = (W1, Yp)-

Note that if |¢(y)] < D°F_, Ailys| and 3°F_; A < 1, then (2.11) holds

ExAMPLE 2 (Threshold 8-ARCH). Suppose that {z;} is generated by

(2.12) Er = \/h—t * €,

(2.13) hs = Z (’)+Zam Pt aelbs-1)
7j=1
where —00 = by < by < --- < by = 0o. Squaring both sides of the

equation (2.12) and taking logarithm, we obtain that
4

(214) w= log[Z( +Zam€ﬁy‘ l)f(t 4€lb;_1,b; ))] +log e,

where y; = log 2.
Equation(2.14) is of the form of (2.10) and
!

(log [Z( () + Zameﬁyt l)I(Et—dE[bj—labj))”
; i=1

- ‘ log [mfx(a(()ﬂ n ; agneﬁyf-i] ‘

< logmax{e®¥-1,...  e"¥-1} 4 constant
S /Bma‘x{lyt——l(v R lyt—ql} -+ constant.

Hence if 0 < 8 < 1 in (2.13), a strictly stationary solution of (2.12) and
(2.13) exists.
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ExAMPLE 3 (Double threshold ARCH). The process {y:} is said to
be a double threshold ARCH model (DTARCH) if it is defined by

(2.15) Yt = ¢(()j) + 2”: ¢§j)yt—i +et, ajo1 S yp < ay,
i=1
(216) &t = \/h—t + €4,
(2.17) he = ) 4+ f;lpg%gﬁ,‘, Br_1 < €t-q < bp,
i=1
where j =1,2,--- ,[1, k=1,2,--- |lp, —0co =ap < a; < -+ < qy =00,
—00 =by < by < -+ < b, = 00, ¢(()j), e é,j), w(()k), e w,(lk) are

constants with w(()k) > 0, wl(k) > 0,1 < i < q. This model is studied
in Li and Li (1996), Liu et al (1997), Ling (1999). Clearly TAR, ARCH,
TARCH are special cases of DTARCH model. (2.15) can be rewrite as

51 14

Yr = Z(cb(()]) + Z ¢.§J)yt—i)f(yt,_de[aj,_l,aj)) + €ty

j=1 i=1

and

L ) b4 )
l Z <¢§)J) + Z ¢§J)yt~i)l(yr -d€laj .1,a5)

=1 i=1
5

. p .
max {|¢¥"]} + max (Z M}Z('])|iyt—i|)l(yt*d€[ajw1,aj)
=1

1<5<l 1<5<h £
1=

IN

p
m (4) L)
< )1 . )
< max {log '}+<1sfs’?1 "E_l |3 l) (max{lys—1],--- s [y—p(})

Therefore if maxj<j<i, > o g ]¢§j)| < 1, assumption (A-1) holds.
On the other hand,

q
hy < Zm}?x{wgk)}sf_i + constant.
i=1

Hence if max; }.7_, |¢§J)| < 1land Y], maxk{wfk)} < 1, then the as-
sumptions (A-1) and (A-3) hold and hence, by Theorem 2, strictly sta-
tionary solution satisfying (2.15)-(2.17) exists. Compare this result with
that of Ling (1999).
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3. Proofs

To prove Theorem1, we need the following theorem due to Tweedie.

THEOREM 4. (Tweedie (1988)) Suppose {X:} is a Feller chain with
transition probability function P(x,dy).

(a) If there exists, for some compact set A, a nonnegative function g
and an € > 0 such that

61 [ Padew) <o) - sear

then there exists a o-finite invariant measure y for P with 0 <
pn(A) < oo.
(b) Further, if

(3.19) /A p(dz)| /A _P(z,dy)g(y)] < oo,

then u is finite.
(c) Further, if

(3.20) » P(z,dy)g(y) < g9(z) — f(z), x¢€ A5,

then p admits a finite f-moment.

The main part of proof of Theorem 1-Theorem 3 is to construct a
proper test function g under which (3.18)-(3.20) hold.

PROOF OF THEOREM 1. Define a test function g : RP*9 — R by for
any x = (U1, -+ ,Up, 21, * , %) in RPYY,

q
(321)  g(x) =1+ max{afuil,--- , plupl} + D Bilzil,
i=1

where o; > 0,6; >0,i=1,---,p,j=1,--- ,q are to be defined later.
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For any x = (u1, -+ ,Up, 21," - ,2q), we have that

Elg(Xt)|X¢-1 = X]
= Elg(d(ur,--- up) + e,

Ug, oy Up—1,E 21, 1 Zg—1)| X1 = x]
< 1+ Emax{ai|o(u, -, up) + &,
aglul, -+, aplup-11}Xe-1 = %]

+E[B|er] + Balaa] + - + Bylzg-1[[XKe1 = X]
< 1+ max{a|p(u, - up)|, a2lut], -+ aplup_1l}

+o1 Elle]|Xi—1 = x] + B1E[|ge]| X1 = X]

+Balz1| + -+ + Bylzg-1]
< 1+ max{iar max{|uif, -, [upl}, a2lutl, -+ s aplup-al}

+aicy) + al\/TZElet]
+B1\/WEe] + Balza| + - o+ + Bylzg—1]
+(o1 + B1) Vo Ele

(3.22) < I+II+K,

where

(3.23) I = max{ oy max{|u1l], - ,|up|}, a2lui],- - , OplUp—-1|},
(3.24)II = (o1 + ﬂx)Eletl<zq:%lzil> + Balza] + -+ + Bylzg-al,
(325)K = 1+ ac+ (o —;:ﬂi)Eletl(\/@ + ¢3) < oo.

Note that

(3.26) A<Ar<Ar <1, 1<k<p.

Now choose a1 > 0 arbitrarily and define

(3.27) ap = Arag_ 1, k=23, ,p.

Then

-1
(3.28) a1>a2>--->ap:)\gp_a1>/\a1>0,
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and hence
I = max{harmax{ful, -, fupl}, anfurl, -, aplupoa]}
< max{Aag max{lual,- -, upl},
N onlug|, AP aslual, -+, AP apyup1}
< v max{apy max{|uil,- , [up|}, clual, - Gpotup_1|}
(329) < Armax{aplupl, arlusl, -, cpo1fup1]}.

The last inequality in (3.29) follows from the fact that a, < a4 for
1<k <p.

On the other hand, if we take b; = (a1 + (1)E|et| for simplicity of
the notation,

q
II = blz"ﬁlzi|+ﬁz|21!+"'+ﬂqlzq_1|
i=1
= (b1 + B2)|z1| + (brva + B3)|22] + - - + (b1¥g-1 + Bg)|2g-1]
(3.30) "‘bl’Yq'Zq,

Now choose § > 0 so that 3 7_, v; + & = 1, and then define

16 )
(331) ﬂH—l :bl(l_’Yl__’Y’L__q_)) 7':1727 aq_l
Then
1)
(332) ﬁ2 - bl(l -MNn - (_1)7
o .
(3.33) Bir1 = ﬂi‘bl')'i*blaa 1=2,3,---,9-1,
and
(3.34) b1>,@i>ﬁi+1, t=2,3,--- ,q—1.
Since Ele;| < 1, we may choose r > 0, £, > 0 so that
)
(3.35) (1- ;)Eletl <r<l
and
ai1(l—8)Ele
(3.36) B = 1 qa) o :
r—(1—2)Ele
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From equations (3.31) and (3.34), B, = bi(vg + g) and
)

]
(337) bl’)/q = ,Bq — b1§ S ,Bq(l - 5)

From (3.36), we have B3 + b1y < rB3; for some r,0 < r < 1, and using
(3.33) and (3.34), we obtain that Sip1+b1y = 8~ b12 < Bi(1- ), and
therefore

(3.38) 17 < max { (1~ g),r}gﬁi|zi|.

Combining (3.5), (3.12), and (3.21), we have
Elg(X¢)[ X1 = x]

X max{anfu], -, aplup|}
pmex{(1-2).r} YAl K
i=1

q
< p(l + max{ailuil,- - ,aplup|}+2ﬁilzi|) +K—-p

=1

IA

(339) = pg(x)+K—p

where 0 < p = max{)\%,(l — g),r} <1

Let || - || be denote any norm on RP*%. Then, by equivalence of norms
on RPT4 g(x) increases as [x|| increases, and hence we can choose € > 0,
p0<p<p <1and M > 0 so large that

(3.40)  Elg(X)IXems =x] < plg(x) — ¢, |Ix]| > M.
Clearly,

(3.41) sup FE[g(X:)|X; 1 = x] < 0.
lIxl<af
(3.40) and (3.41) imply that (3.18)-(3.20) in Theorem 4 hold with a
compact set A = {x : ||x|| < M}, from which the stationarity of {y:} is
obtained.
Let m be its invariant probability measure. Then by part (c) of The-
orem 4, we have

(3.42) / g(x)m(dz) < oo.

Take 71 (B) = w(B), where B = B x RP*971 and my(C) = 7(C), where
C = R? x C x R7!. Here B,C ¢ B(R), and B(R) denote the Borel
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sigma field on R. Then by (3.42), E,, |yt| < o0 and Er,(|et|) < oo. This
completes the proof.

PROOF OF THEOREM 2. To prove Theorem 2, we define g(x) which
is slightly different from that in the proof of Theorem 1.
For x = (u1, -+ ,up, 21, , 2q), let

g
g(x) = 1+ max{ai|ui|, -, 0p|up|} + Zﬁizf.
i=1

Then E[g(X:)|X¢—1 = x| < I+ II + K, where I is exactly the same as
that of (3.23), and ‘

q
(3.43) IT = (a1 + ﬁl)E(ef)(Z%zf) + B2zt + -+ ezt
i=1
and
(344) K=1+ al(cl + 1) + E(etz)(al + ,81)(0./0 + CQ).

(3.43) is due to simple inequality |z| < 2 + 1. The remaining part of
the proof follows the same line as that of Theorem 1, we omit it.

PrRoOOF OF THEOREM 3. Conclusion follows immediately from The-
orem 1 and Theorem A1l.5 (p.457) in Tong (1990).
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