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KAHLER SUBMANIFOLDS WITH
LOWER BOUNDED TOTALLY REAL
BISECTIONAL CURVATURE TENSOR II

YoNG-S0o0 Pyo aND KYOUNG-HwA SHIN

ABSTRACT. In this paper, we prove that if every totally real bi-
sectional curvature of an n(2 3)-dimensional complete K#hler sub-
manifold of a complex projective space of constant holomorphic
sectional curvature c is greater than G'rl(—72+3(3n2 + 2n — 2), then
it is totally geodesic and compact.

1. Introduction

The theory of Kahler submanifolds is one of fruitful fields in Rie-
mannian geometry. For the curvatures of a Kdhler manifold M, we can
consider two kinds of sectional curvatures which are related to almost
complex structure J and different from usual sectional curvatures, holo-
morphic sectional curvatures and totally real bisectional curvatures. The
pinching problem for these three kinds, the sectional curvature, the holo-
morphic sectional curvature and the totally real bisectional curvature,
is an interesting topic in Kéhler geometry.

For a complex submanifold M = M" of a complex space form M’ =
M™P(c), the set B(M) of totally real bisectional curvatures satisfies
B(M) £ § by the Gauss equation. It is easily seen that a totally geodesic
complex submanifold M = M™(c) of M’ = M"*P(c) satisfies B(M) = §
again by the Gauss equation. On the other hand, a complex quadric
M = Q" of M' = M™P(c), ¢ > 0, satisfies 0 £ B(M) £ £ by Kobayashi
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and Nomizu [6]. By paying attention to this fact, the following theorem
was proved by Ki and Suh [5] for totally real bisectional curvatures.

THEOREM A. Let M = M" be an n(2 3)-dimensional complete
Kéhler submanifold of an (n + p)-dimensional Kéhler manifold M' =
M"™*?(c) of constant holomorphic sectional curvature ¢(> 0). If a(M) >
a1, then M is totally geodesic, where

c
2n(n? + 2" +3)

a = (n3 +2n? + 2n — 2)

and a(M) is the infimum of the set B(M).

The purpose of this paper is to prove the following theorem for an
improvement on the above estimation.

THEOREM. Let M = M™ be an n(2 3)-dimensional complete Kahler
submanifold of an (n + p)-dimensional K&hler manifold M’ = M™*P(c)
of constant holomorphic sectional curvature c(> 0). Then there exists a
constant a; depending only upon n and c so that if a(M) > a3, then M
is totally geodesic, where as < ay.

2. Kihler manifolds

This section is concerned with recalling basic formulas on Kéahler
manifolds. Let M be a complex n(2 2)-dimensional Kahler manifold
equipped with Kéhler metric tensor g and almost complex structure .J.
We can choose a local field {E,} = {E;, Ej«} = {E1, -+, Ep, E1+, -+,
E,+} of orthonormal frames on a neighborhood of M, where E;- = JE;
and j* = n+j. Here and in the sequel, the Latin small indices 4,4, -+ run
from 1 to n and the small Greek indices a, 3, -+ run from 1 to 2n = n*.
We set U; = %(EJ ~iE;«) and U; = \%(EJ +1E;»), where ¢ denotes
the imaginary unit. Then {U;} constitutes a local field of unitary frames
on the neighborhood of M. With respect to the Kéhler metric, we have
g(Uj’ Uk) = éjk‘

Now let {w;} be the canonical form with respect to the local field
{U;} of unitary frames on the neighborhood of M. Then {w;} =
{wi,++ ,wp} consists of complex valued 1-forms of type (1,0) on M
such that w;(Uy) = d;i and wy, -+ ,wp, @1, , @y are linearly indepen-
dent. The Kahler metric g of M can be expressed as g = ZZ]- wj ® @,
Associated with the frame field {U;}, there exist complex-valued 1-forms
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wjk, which are usually called complex connection forms on M such that
they satisfy the structure equations of M

dwi+Zwik/\wk:O, wij + @i =0,

k
(2.1) dwij + Zwik Awyj = $ij,
k
Qij = Zngk[ wi A\ wy,
k.l

where Q;; (resp. Kjjy;) the curvature form (resp. the components of the
Riemannian curvature tensor R) of M. From the structure equations,
the components of the curvature tensor satisfy

Kijkl" = Kj‘uka

(2.2)
Kiini = Kinji = Kijei = Kija-

For a local field {E,} = {E;,E;»} = {F1,--+ ,En,E1+, -+ ,Ep+} of
orthonormal frame on a neighborhood of M, we denote by R,g,s the
components of the Riemannian curvature tensor R. Then we have

(2.3) Kiinr = —{(Rijri + Rivjae1) + 1(Rin jrr — Rijini) }-

Next, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows:

(24) S = Z(SUUJ, Qwj + S’i‘j(ﬂi & w]-),

i.J
where S;; = Y1 Kri; = S5: = Si;- The scalar curvature r of M is also
given by

(2.5) r=2% 5

An n-dimensional Kéhler manifold M is said to be Einstein, if the Ricci
tensor S satisfies the condition
r
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The components Kj;.,, and Kjjyps (resp. S;5 and Sj;;) of the covari-
ant derivative of the Riemannian curvature tensor R (resp. the Ricci
tensor S) are given by

Z(Kfjklmwm + Kz]klm )

m

(2.7) = dKijii — > _(Kmjri@mi + Kinpiwmg

+ Kz]mln}mk? + Kz]kmwml),

(2.8) D (Sijewr + Sigp@k) = dSi5 — > (Sigwri + Sizks).

k k

The second Bianchi identity is given as follows:

(2.9) Kijkl‘m = Kijml‘k-
And hence we have
(210) z;k - Skgz Z Jikmm-

A Kihler manifold of constant holomorphic sectional curvature is
called a complez space form. The components Kj;;; of the Riemannian
curvature tensor R of an n-dimensional complex space form of constant
holomorphic sectional curvature c is given by

(2.11) Kijur = 5(6ij0k1 + 8ixd1).

l\DlO

Now let (M,g) be an n-dimensional Kahler manifold with almost
complex structure J.

DEFINITION 2.1. For a totally real plane section P = [X,Y’] spanned
by orthonormal vectors X and Y, the totally real bisectional curvature
B(X,Y) is defined by

(2.12) B(X,Y) = g(R(X,JX)JY,Y).
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Then, using the first Bianchi identity to (2.12) and the fundamental
properties of the Riemannian curvature tensor of Kéhler manifolds, we
get

B(X,Y) = g(R(X,Y)Y.X) + g(R(X, JY)JY, X)

(2.13) =K(X,Y)+ K(X,JY),

where K(X,Y) means the sectional curvature of the plane spanned by
X and Y.

In the rest of this section, we suppose that X and Y are orthonormal
vectors in a non-degenerate totally real plane section. If X’ = % (X+Y)

and Y/ = %(X —Y), then it is easily seen that we get
g(X', X"Y=9gY' YY) =1, g(X', Y"Y=0.
Then we have
B(X',Y") = g(R(X',JX")JY",Y")
= JUH(X) + H(Y) +2B(X,Y) ~ 4K (X, JY)},

where H(X) = K(X,JX) means the holomorphic sectional curvature
of the holomorphic plane spanned by X and JX. Hence we have

(2.14)  4B(X',Y') = 2B(X,Y) = H(X) + H(Y) — 4K(X,JY).

If we put X" = %(X +JY)and Y = %(JX +Y), then we get

gX" X" = g(Y",Y") =1, g(X".¥")=0.
Using the similar method as in (2.14), we have
(2.15)  4AB(X",Y")-2B(X,Y) = H(X) + H(Y) — 4K (X,Y).
Summing up (2.14) and (2.15) and taking account of (2.13), we obtain

(2.16) 2B(X',Y") +2B(X",Y") = H(X) + H(Y).

Next, we calculate here the totally real bisectional curvatures of a
Kahler manifold. Let M = M™ be an n(2 3)-dimensional complex
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submanifold of an (n + p)-dimensional Kéhler manifold M’ = M™1?(c)
of constant holomorphic sectional curvature c¢. Assume that the totally
real bisectional curvatures on M is bounded from below by a constant
a and let a(M) be the infimum of the set B(M) of the totally real
bisectional curvatures on M. Then we see a < a(M). From (2.16), we
have

(2.17) H(X)+ H(Y) 2 4a,

For an orthonormal frame field {E1,--- ,E,, Ey»,- -, Ep+}, the holo-
morphic sectional curvature H(E;) for E; can be expressed as

(2.18) H(E;) = g(R(E;, JE;)JE;, E;j) = Rjjj-j = K;

33is

where the last equality follows from (2.3). On the other hand, it is easily
seen that the plane sections P; = [E;, JE;| and P, = [Ey, JE), 7 #k,
are orthogonal and the totally real bisectional curvature B(E;, Ey) is
given by

(2.19) B(E;, Eyx) = 9(R(E;, JE;)JEy, Ex) = Rjjer-x = K05, J # k.
From the inequality (2.17) for X = E; and Y = Ej, we have
(2.20) K355+ K 2 40, j # k.

Thus we have

(2.21) > (K355 + Kiwi) 2 2an(n — 1),
i<k

which implies that
(2:22) > Kjjj5 2 2an,
J

where the equality holds if and only if Kj,;;; = 2a for any index j.

Since the scalar curvature r is given by

TZZZ Jkk_2ZK3]J3 Z Jkk
J

J#k
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we have by the condition

r>2z K;;i; +2an(n — 1),

from which it follows that

(2.23) Z i S 5 —an(n— 1),

where the equality holds if and only if K;,,; = a for any distinct indices
J and k. In this case, M is locally congruent to M™(a) due to Houh [4].
Also by (2.20) gives us

Z (K355 + Kigri) 2 4a(n — 1)
k(#7)

for each j, so that

k

From this inequality together with (2.23), it follows that

(2.24) (n—2)K;;;; 2 a(n—1)(n +4) —g

for any index j, so that the holomorphic sectional curvature Kj,;;; is

bounded from below for n 2 3. Moreover, the equality holds for some
index j if and only if M is locally congruent to M™(2a).

Since the Ricci curvature S;; is given by

Si5=Kjsii+ Y Kijuio
i(#k)

we have by the assumption

Si; 2 K;

JJJJ

a(n —1)
and hence by (2.24), we have

1
—_—2){4a(n —1(n+1)—r}

(2.25) S, T

- >
Ji =
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3. Complex submanifolds

This section is recalled complex submanifolds of a Kéhler manifold.
First of all, the basic formulas for the theory of complex submanifolds
are prepared.

Let M’ = M™*? be an (n + p)-dimensional Kéahler manifold with
Kahler structure (¢’,J’). Let M be an n-dimensional complex subman-
ifold of M’ and let g be the induced Kéhler metric tensor on M from
g'. We can choose a local field {Us} = {U;, Uy} = {U1,- -+ ,Unyp} of
unitary frames on a neighborhood of M’ in such a way that, restricted
to M, Uy, ---, U, are tangent to M and the others are normal to M.
Here and in the sequel, the following convention on the range of indices
is used throughout this paper, unless otherwise stated:

A>Ba'”:1’”' 7n7n+1a"' ,”+P’
i’j,..._—_—_]_’... , 7,
x,y,---=n+1,--- , 1+ p.

With respect to the frame field, let {wa} = {w;,w.} be its dual frame
fields. Then the Kéhler metric tensor g’ of M’ is given ¢’ =23 ,wa ®
@ 4. The canonical forms w4, the connection forms wap of the ambient
space M’ satisfy the structure equations

de+ZwACAwC:0’ wap +wpa =0,

dwap + ZWAC Nwepg = Q%B,

(3.1) S
24B = Z K,/chDwC AWwp,
C,D
where Q/, 5 (resp. K';5,p) denotes the curvature form (resp. the com-

ponents of the Riemannian curvature tensor R’) of M.
Restricting these forms to the submanifold M, we have

(3.2) wg =0,

and the induced K#hler metric tensor g of M isgiven by g =23 ;Wi ®w;,
Then {U;} is a local unitary frame field with respect to the induced
metric and {w;} is a local dual frame filed due to {U;}, which consists
of complex-valued 1-forms of type (1,0) on M. Moreover, wy, -+, Wy, &1,
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, Wp, are linearly independent, and {w;} is the canonical forms on M.
It follows from (3.2) and Cartan’s lemma that the exterior derivatives
of (3.2) give rise to

(3.3) wei =Y hfjw; Rl =h.
J

The quadratic form o =}, ;  hijw; ® w; ® U, with values in the nor-
mal bundle on M in M’ is called the second fundamental form of the
submanifold M. From the structure equations for M’, it follows that
the structure equations for M are similarly given by

dw; + Zwik Awyp =0, wij +wj; = 0,
k

(3.4) duwij + Z“’ b Awkj = 8ij,
ZKI]klw}' /\wz
k.l

For the Riemannian curvature tensors R and R’ of M and M’, re-
spectively, it follows from (3.1), (3.3) and (3.4) that

(3.5) K= KL Zh

The components S;; of the Ricci tensor .S and the scalar curvature r on
M are given by

(3.6) Z Kjpis — hiis
(3.7) Z K~

where h;3? = h;? =3 BT hiand hy = 35 hys®
Now the components hY; ik and h ., of the covariant derivative of the

second fundamental form on M are glven by

> (Bfjpwn + R o)
k
(3.8) | )
= dhf; — Y (hywii + hfwi)) + D hway.
k Y
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Then, substituting dh; in this definition into the exterior derivative

dwgi =Y (dh; Aw; + hijdw;)

J

of (3.3) and using (3.1) ~ (3.4) and (3.6), we have

e

In particular, let the ambient space M’ = M"™*?(c) be an (n + p)-
dimensional complex space form of constant holomorphic sectional cur-
vature ¢. Then, by (2.11) and (3.5) ~ (3.7), we get

c _
c

(3.11) 87 = 5(n+1)dij — hyz,

(3.12) r=cn(n+1) — 2h,,

(3.13) he g = 0.

Next, let M’ = M"™"? be an (n + p)-dimensional Kahler manifold
and let M be an n-dimensional complex submanifold of M’. Then the
Laplacian of the squared norm hs of the second fundamental form « on
M is given by Aiyama, Kwon and Nakagawa [1] as follows:

(3.14) Ahy = 2||Vallg + c(n+ 2)hy — 4hy — 2T A2,

where hqy = 37, . hifhjf and A is a Hermitian matrix of order p with
entry A7 =3, - hi:h!

J ittt
4. Totally real bisectional curvatures

Let M™ be an n-dimensional Kahler submanifold of an (n + p)-
dimensional complex space form M"P(c), ¢ > 0. Let S and r be
the Ricci tensor and the scalar curvature of M, respectively. The Ricci
curvature of the complex quadric Q" of P"%!(c) is equal to §n and fur-
thermore the set B(M) is less than or equal to § and if M is totally

geodesic, then B(M) = § Paying attention to this fact, we consider
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whether or not in the value distribution of B(M) the maximal value is
discrete.

At the beginning of this section, we shall consider the following a
generalized maximum principle.

THEOREM 4.1. Let M be a complete Riemannian manifold whose
Ricci curvature is bounded from below. Let f be a non-negative function
on M satisfies

(4.1) Af = kf,

where k is a positive constant. If f is bounded, then f vanishes identi-
cally.

Proor. Under the assumption of the theorem, we can apply the
generalized maximum principle due to Omori [8] and Yau [11] for the
function f bounded from above. So, for any positive number ¢, there
exists a point {p} in M which satisfies the following properties:

Vi)l <e,  Af(p)<e,  (sup f) —e < f(p).

Thus, for any positive sequence {¢,,} in such a way that the sequence
converges to zero as m tends to infinity, there exists a point sequence
{pm} in M which satisfies the following properties:

(4.2) IVf@n)ll <€m,  Af(pn) <e€m,  (sup f) — em < fpm)-
By (4.1) and the above property (4.2), we have

€m > Af(Pm) 2 kf(Dm) > k((sup f) — €m),

which implies that we have 0 2 k sup f. It turns out to be sup f = 0,
because k is positive and f is non-negative. Accordingly, we see that
the function f vanishes identically on M. It completes the proof. a

REMARK 4.1. We do not know whether or not Theorem 4.1 holds
without the condition that the function is bounded from above. Al-
though it may be the difficult problem, it seems to be very interesting
to wrestle with the problem.

Let M be an n(2 3)-dimensional Kéhler submanifold of an (n + p)-
dimensional complex space form M’ = M™*P(c) of constant holomorphic
sectional curvature c. Then by the equation (3.5) of Gauss, we have

c cp o C .
ijkl_cZE_Zh;k ik S 5 j#k.
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Thus we see that for any totally real plane section [X,Y], the totally
real bisectional curvature B(X,Y) satisfies

B(X,Y) <

Now let a(M) be the infimum of the set B(M) of totally real bisec-
tional curvatures of M. Though the set B is bounded from above, we
have no information on a(M). In their paper [5], Ki and Suh proved the
following

THEOREM 4.2. Let M = M™ be an n(2 3)-dimensional complete
Kéhler submanifold of an (n + p)-dimensional Kahler manifold M' =
M"™*P(c) of constant holomorphic sectional curvature c(> 0). If a(M) >
a1, then M is totally geodesic, where

C

3 2
2 2n — 2).
2n(n2+2n+3)(n 20+ 2n - 2)

a; =

Since the matrix H = (h,z?) defined by h;z* = 3, A%, A%, and
the matrix A = (A7) defined by A7 = 3., hjw-kﬁgk are both positive
Hermitian ones, the eigenvalues A; of H and the eigenvalues ), of A are

non-negative real valued functions on M. Thus it is easily seen that

> N=TrH=hy » A\=TrA=—h,

J

1
(4.3) ho® 2 ha =3 A% 2 ~ho?,
J
1
hy? > Tr A% = zm:,\ﬁ > 5h227

where the second equality in the second relationship holds if and only
if all eigenvalues of the matrix H are equal, and the second equality in
the last relationship holds if and only if all eigenvalues of the matrix A
are equal. It means that each equality holds if and only if the rank of
matrices H and A are at most one.

The following result is proved.

THEOREM 4.3. Let M = M™ be an n(2 3)-dimensional complete
Kéhler submanifold of an (n + p)-dimensional Kihler manifold M' =
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M"™P(c) of constant holomorphic sectional curvature c(> 0). Then
there exists a constant ay depending only upon n and c so that if a(M) >
ay, then M is totally geodesic, where as < ay.

PROOF. By (3.14), we have
Ahg 2 c(n + 2)hy — 4hy — 2Tr A?,

where the equality holds if and only if the second fundamental form «
of M is parallel. Together the above equality with the above properties
about eigenvalues (4.3), it follows that

Ahy g C(Tl + 2)h2 — 6h22,

where the equality holds if and only if the second fundamental form of
M is parallel and the rank of the matrices H and A are at most one. A
non-negative function f is defined by hy Then the above inequality is
reduced to

(4.4) Af 2 -6f%4c(n+2)f,

where the equality holds if and only if the second fundamental form of
M is parallel and the rank of the matrices H and A are at most one.
By (2.22), (2.23) and (3.12), we have

2na(M) £ =n(n+1) - hy — n(n — Va(M).

[SeR e

This yields that

1
(4.5) F=Y A=h < gr(n+1)(e—2a(M)), A5 20,
J
where the first equality holds if and only if Kj;;; = 2a(M) and K;,p =

a(M) for any indices j # k. This means that each eigenvalue A; is
bounded. On the other hand, since the Ricci curvature S;; of M is
given by (3.11) as

C
S]j = §(n+ 1) - /\ja

it is also bounded. Applying the generalized maximum principle due to
Omori {8] and Yau [11] to the bounded function f, we see that for any
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sequence {ep, } of positive numbers which converges to 0 as m tends to
infinity, there exists a point sequence {p,,} such that

IVf @l < €my Af(Pm) <€m,  sup f—em < fpm).
Thus, we have
(4.6) lim Af(pn,) £ lim €, =0, lim f(p,,) =sup f.
m—00 m—00 m—00
By (4.4) and (4.6), we see
sup f{sup f — =(n+2)} 20,
which means that
sup f=0 or sup f2 g(n+2).
Ifsup f = 0, then f vanishes identically on M, because f is non-negative.
Then M is totally geodesic.

Suppose that M is not totally geodesic. So, f satisfies sup f 2
£(n+2). On the other hand, by (4.5), we have

sup f S %n(n + 1)(c — 2a(M)).

Thus, we see that

A

c
MYS ———(3n? +2n—2).

a(M) 6n(n+1)(n +2n-2)

We denote the right hand side of the above inequality by as, which is

the constant depending on n and ¢, which implies that if a(M) > aq,

then M is totally geodesic. It completes the proof. O

REMARK 4.2. By the straightforward calculation, we can easily show
that a; > az. Since the estimation is rough and it is not the best possi-
ble, there may be room for further improvement. For the holomorphic
pinching, Ros [9] determined the best possibility under the compact
submanifolds. Under the condition a(M) > a2, we have by (2.24) and
(3.12)

(n—2)K;;55 2 (n = 1)(n + 4a(M) - 3

= (n—1)(n+4)a(M) — -;in(n +1) 4 hy,
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and hence we have

3iii = 2(T1-2_){2(” —1)(n+4)az —cn(n+1)} >0

for n 2 3. Therefore, M is compact because the holomorphic sectional
curvatures of M are positive (see [2] and [10]).
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