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JORDAN DERIVATIONS AND JORDAN LEFT
DERIVATIONS OF BANACH ALGEBRAS

Kyoo-HonG PArk AND YONG-S00 JUNG

ABSTRACT. In this paper we obtain some results concerning Jordan
derivations and Jordan left derivations mapping into the Jacobson
radical. Our main result is the following: Let d be a Jordan deriva-
tion (resp. Jordan left derivation) of a complex Banach algebra A.
If d?(z) = 0 for all = € A, then we have d(A) C rad(A)

1. Introduction

Let A be an associative algebra over the complex field C. A linear
mapping d : A — A is called a derivation if d(zy) = d(z)y + zd(y) for
all z, y € A and a Jordan derivation (resp. Jordan left derivation) if
d(z xy) = d(z) xy + z *d(y) for all z, y € A (resp. d(z?) = 2zd(z) for
all z € A), where a *b denotes the Jordan product ab+ ba. In this paper
we write [z, y] for the commutator zy — yz.

Obviously every derivation is a Jordan derivation, but the converse
is not true in general except the case when the algebra is semiprime [2,
Theorem 1]. If 7(z) = 0 (x € A), then z is called quasinilpotent, where
r(-) denotes the spectral radius, and henceforth, Q(A) will denote the
set of all quasinilpotent elements of A.

Our research is based on the Singer-Wermer theorem [9] which states
that every bounded derivation of a commutative Banach algebra has its
range in the Jacobson radical.

In 1988, Thomas [10] generalized the Singer-Wermer theorem by drop-
ping the boundedness of a derivation. This generalization was known as
the Singer-Wermer conjecture.

Received January 20, 2001.

2000 Mathematics Subject Classification: Primary 46H99; Secondary 47B47.

Key words and phrases: Banach algebra, Jordan derivation, Jordan left deriva-
tion, Jacobson radical.

This paper was supported by the Institute of Basic Science of Seowon University,
2001 grant.



246 Kyoo-Hong Park and Yong-Soo Jung

The Kleinecke-Shirokov theorem ([4], [7]) which is a classical theo-
rem of a Banach algebra theory asserts that if the elements a, b in a
Banach algebra A satisfy [a, [a,b]] = 0, then [a, ] is quasinilpotent. The
assumption [a, [a,b]] = 0 can be reformulated as d?(b) = 0, and the con-
clusion as d(b) is quasinilpotent, where d = [-, a] is the inner derivation
implemented by a. Furthermore, Mathieu and Murphy [5, Theorem 2.1]
proved that the Kleinecke-Shirokov theorem holds for arbitrary bounded
derivations (not necessarily inner) and the validity of Mathieu and Mur-
phy’s result for any derivation was given by Thomas [11, Theorem 2.9]
(this result implies the Singer-Wermer conjecture) {11, p.152]. Since
every derivation d on A such that d(z) € Q(A) for all z € A maps A
into rad(A) (see [5], [12]), the Thomas’ result suggests a global version
such as that d(A) C rad(A) if d?(z) =0 for all x € A.

The purpose of this paper is to obtain the results which modify the
global version of the above Thomas’ result to any Jordan derivation
(resp. Jordan left derivation) on Banach algebras.

2. Jordan derivations on Banach algebras

The following lemma will play a crucial role to prove the results con-
cerning Jordan derivations on Banach algebras in this section.

LeEMMA 2.1. Let d be a Jordan derivation of a Banach algebra A
such that d*(z) € Q(A) for all x € A. Then d leaves each primitive ideal
of A invariant.

PROOF. Suppose that d?(z) € Q(A) for all x € A. By setting d; (1) =
0, d can be extended to a Jordan derivation d; on the unitization 4; of
A, and it is clear that d3(x) € Q(A,) for all x € A1, and hence, without
loss of generality we can assume that A is unital. Let P be a primitive
ideal of A. Then A has an irreducible representation 7 : A — L(X)
on a Banach space X with kernel P, where L(X) is the algebra of all
linear mappings on X. An application of [8, Lemma 3.1] yields that
d*(z”) — nl(d(z))" € P for all z € P and n € N.

Therefore, for all z € P and k € N, we obtain that

r(d(z) + P) = r(d(z)?* + P)/%*
= ((2k)!)~1/2k 'r(d%(ax%) + P)l/2k
< ((2k))~V/2F (g2 (g2R))1/2k =
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whence d(z) + P € Q(A/P) for all z € P.

We claim that d(P) C P. Let o € P and suppose that d(zq) ¢ P.
We first note that the normed division algebra D = {T' € L(X) : aT¢ =
T(a€), a € A, £ € X} =Cl1 ([1, Corollary 25.5]).

If m(d(zg)) € C1, then an(d(z))¢ = n(d(xo))(a&) for all a € A and
¢ € X, and hence ad(xg) = d(zg)a& for all a € A and £ € X. This
shows that ad(zg) — d(zg)a € P for all a € A, that is, d(zg) + P €
Z(A/P), where Z(A/P) is the center of a primitive Banach algebra
A/P. Since Z(A/P) = C1 and d(zg) + P is quasinilpotent, it follows
that d(zp) + P = P which means that d(z;) € P. This contradiction
implies that m(d(z()) ¢ CI.

Now {1, m(d(zo))} is linearly independent whence there exists & € X
such that {&g,7(d(z0))&0}, that is, {€o,d(z0)&} is linearly indepen-
dent. Using the Jacobson density theorem, we choose a y € A such
that y€o = & and yd(zo)éo = o — d(z0)§o. Then (d(z0) * y)éo =
d(zo)y&o + yd(z)€o = o, so we obtain d(zy) xy ¢ Q(A) and the relation
Sp(4, z) =Up Sp(A/P, x + P), where Sp(B, -) denotes the spectrum
with respect to the unital algebra B and the union is taken over all
primitive ideals of A, shows that d(z¢) xy + P ¢ Q(A/P). However
d(zo)*y+P € Q(A/P) since d(zp) *y+ P = (d(zo*y) —xo*d(y)) + P €
d(P) + P (y € A). This contradiction gives us that d(P) C P, and
completes the proof of the theorem. O

By using Lemma 2.1, we have the following main results.

THEOREM 2.2. Let d be a Jordan derivation of a Banach algebra A
such that d?>(z) = 0 for all z € A. Then d maps A into rad(A).

PROOF. By the assumption, it is immediate that d?(z) € Q(A) for
all z € A, and so Lemma 2.1 shows that d leaves each primitive ideal
P of A invariant whence it follows that a Jordan derivation d induces
a Jordan derivation d of the primitive Banach algebra A/P defined by
dz + P) =d(z)+ P (z € A).

Observe that d is a derivation [2, Theorem 1] by the primeness of
A/P. Since the hypothesis d?(z) = 0 for all z € A gives d> = 0 on A/P,
it follows from Posner’s first theorem [6, Theorem 1] that d=0on A/P.

We thus see that d(A) C P. Since this holds for any primitive ideal
P of A, we conclude that d(A) C rad(A). d

THEOREM 2.3. Let d be a Jordan derivation of a Banach algebra A
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such that d(A) C Z(A), where Z(A) is a center of A. Then d maps A
into rad(A).

PROOF. Suppose that d(A) € Z(A). The restriction d|z(4) is a
derivation of a commutative Banach algebra Z(A), and hence Thomas’
theorem [10] implies that d(Z(A)) C rad(Z(A)) = Z(A)Nrad(A). From
the assumption, we see that d2(A) C rad(A), and an application of
Lemma 2.1 with [1, Proposition 25.1 (i)] yields that d leaves each prim-
itive ideal P of A invariant. Hence a Jordan derivation d induces a
Jordan derivation d of the Banach algebra A/P. Now the induced Jor-
dan derivation d of the prime algebra A/P becomes a derivation, and
satisfies d? = 0 because of d?(A) C rad(A), and thus the remainder
follows the same fashion as in the latter half of the proof of Theorem
2.2. So, the theorem follows. O

REMARK. The fact that d?(z) € Q(A) for all z € A does not, in
general, imply that d(A) C rad(A). For, in the case when A is semisim-
ple, if @ € A is not in the center such that a® = 0, d(z) = [z, a], then
d*(z)? = 0 for all z € A (and hence d*(z) € Q(A) for all z € A) in spite
of d #0.

3. Jordan left derivations on Banach algebras
To prove the main result of this section, we need the following lemmas.

LEMMA 3.1. Let d be a Jordan left derivation of an algebra A. Then
for all z, y € A:

1°. d(zy + yz) = 2z2d(y) + 2yd(z),

2°. d(zyz) = z%d(y) + 3zyd(z) — yzd(z).

PROOF. A special case of Proposition 1.1 in [3]. a

LEMMA 3.2. Let d be a Jordan left derivation of a noncommutative
prime algebra A. Then we have d = 0.

PROOF. A special case of Corollary 1.3 in [3]. O
Now we have the main result in this section:

THEOREM 3.3. Let d be a Jordan left derivation of a Banach algebra
A such that d?(z) = 0 for all z € A. Then d maps A into rad(A).
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PROOF. As in the proof of Lemma 2.1, by setting d;(1) = 0, d can
be extended to a Jordan left derivation d; on the unitization A; of A4,
and it is clear that d?(z) = 0 for all z € A;, and hence, without loss of
generality we can assume that A is unital.

We first intend to prove that if d?(z) = 0 for all z € A, then d(z) is
quasinilpotent for all z € A.

Suppose that

(1) d*(z) =0 for all z € A.

Let us replace z by z? in (1). Then we obtain

(2) d(zd(x)) =0 forall z ¢ A.
Using Lemma 3.1 and (2), we have

(3) d([d(z), z]) = 2d(x)? for all =z € A.
In fact,

d([d(z), z]) = d(d(z)z + zd(z)) — 2d(zd(x))
2d(z)? + 22d?(z) — 2d(zd(z))
= 2d(z)%

The linearization of (3) gives
d([d(z), y] + [d(y), z]) = 2d(z)d(y) + 2d(y)d(z)  forall z, y€ A

Substituting z2 for y in the above relation, and using Lemma 3.1 and

3),
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whence we see that
(4) d(zld(z), z]) = d(z)zd(z) + zd(z)? for all z € A.

Now using (3), (4) and Lemma 3.1, we obtain

(5) d([[d(z), =], z]) =0 for all z € A.
Indeed,
d([[d(z), =], 2]) = d([d(z), x|z — =z[d(z), z])
= d([d(z), z]z +z[d(z), z]) — 2d(z[d(x), ])
= 2[d(z), z]d(z)+ 2zd([d(z), z]) — 2d(z[d(z), z])
= 2[d(z), x]d(z) + 2zd(z)? — 2d(z)zd(z)
= 2[d(z), z]d(z)— 2[d(z), z]d(z) = 0.

Also according to (5) and Lemma 3.1, we have

0 = d([[d(x), «], =])
= d(d(z)z? + 2%d(z)) ~ 2d(zd(z)z)
= 4d(z)zd(x) + 222d%(z) — 222d? (z) — 6xd(x)? + 2xd(z)*
= 4[d(z), z]d(z),

that is,
(6) [d(z), z]d(z) =0 for all z € A.
From (6) and Lemma 3.1, it follows that

0 = d([d(z), x]d(z))
= d(d(z)zd(z) — d(zd(z)?)
= d(z)® — d(zd(x)?),

and hence we get

(7) d(zd(z)?) = d(z)* for all z € A.
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Applying Lemma 3.1 and (7), we have for all z € A,

d([d(z)?, z]) = d(d(z)*x ~ zd(z)?)
= d(d(z)*z + zd(x)?) — 2d(zd(z)?)
= 2d(z)* + 2zd(d(z)?) — 2d(zd(z)?)
= 2d(z)? + 4zd(z)d*(z) - 2d(z)® =

whence we arrive at the fact that d(z)® = 0 for all x € A. This means
that for all € A, d(z) is nilpotent, and so d(z) is quasinilpotent for all
x € A

Now let P be any primitive ideal of A. Note that A/P is a primitive
algebra, and hence is semisimple. Let y € A and £ € P. Then by
Lemma 3.1, we observe that

2yd(z) = d(zy + yz) — 2z2d(y) € d(P) + P.

This shows that d(P) + P/P is a left ideal of A/P. Since d(z) € Q(A)
for all z € A, we see that d(z) + P € Q(A/P) for all z € P by using the
relation Sp(A4, z) = Jp Sp(A/P, z + P) as in the proof of Lemma 2.1.

Hence we conclude that d(P) + P/P is a quasinilpotent left ideal
of A/P, which is contained in rad(A/P) by [1, Proposition 25.1 (ii)].
Semisimplicity forces d(P) C P. Therefore d induces a Jordan left
derivation d on the Banach algebra A/P.

Assume that A/P is commutative. Then d is a derivation, and so it
follows from [10] that d = 0. In the case when A/P is noncommutative,
since A/P is prime, we see that d=0 by Lemma 3.2. Thus, in any case
d = 0, that is, d(A) C P for any primitive ideal P of A. This implies
that d(A) C rad(A). The proof of the theorem is complete. ]
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