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SIMPLE LIE ALGEBRAS WHICH
GENERALIZE KPS’S LIE ALGEBRAS

Ki-BoNGg NAM AND MOON-OK WANG

ABSTRACT. In this paper we generalize the Lie algebras of KPS’s
in [4], which have no toral elements. However our generalized Lie
algebras have toral elements. Moreover our Lie algebras are not
isomorphic to the Witt algebra W (n) with a toral element.

1. Introduction

Let F be a field of characteristic zero and let A;; € F. The skew
polynomial ring R(A) = F[z1,- - ,z,] with relations z;z; = A jz;2; has
been called a quasi-polynomial ring in [1]. (For more details, please refer
to [4].) The corresponding Laurent polynomial ring

F[l‘l,"‘ ,mn,xfl,... ’xﬁl] :P(A) = S

n

obtained by inverting the zs, was studied by McConnell and Pettit {6].
In particular, it has been shown [6, Proposition 1.3] that S is simple
if and only if the center of S is F if and only if there does not exist
m = (my, -+ ,my) € Z™ with m/s not all zero such that for all j,
1<j<n,
(Ar)™ -+ (An)"m = 1.

Corresponding to S there is a matrix A = (A; ;) with A;; = AL ]-1 fori # j
and A;; = 1. Kirkman, Processi and Small showed in KPS’s [4] that if
S is a simple ring, then the Lie algebra ad(S) of inner derivations on S
is a simple Lie algebra of KPS [4].

In this paper, we will define the Lie bracket on S by the algebra
multiplication:

[X,Y]=XY —-YX for X,Y €8.
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Note that this Lie algebra is isomorphic to ad(S) [4, p.3770]. We will
show that the Lie algebra M’ in Section 2 is simple (please refer to
Theorem 1 in Section 2) and the Lie algebra M’ is not isomorphic to
any Cartan type subalgebra of the Witt algebra W+ (n) [9] (please refer
to Proposition 2 in Section 3).

2. Main results

Let L be the Lie algebra with basis
B={a} - alilel -afy € 5)
with the Lie bracket on basis element as follows:
al i oft 0]
— a‘;?llm;"mjllx%"_x-{lx%":p?x:{l

for any w{l --~:1:%",x§1 ..zl € B,

Then we can easily see the Lie algebra ad(S) = [Ls, Ls] = L.

Let M,(S) = (M,(S),+,-) be the matrix ring such that {(a;;) €

J

Myp(S)la;; € 5,1 < 4,5 < n}. Let us introduce the Lie bracket [,] on
M, (S) as follows:

[m1,ma] =my-mg —ma-my for all my,ma € Mp(S).

It is easy to see that (M, (S),+,-,[,]) is a well-defined Lie algebra. Let
us denote M, (S) as the usual F-algebra and M,,(S)|) as the correspond-
ing Lie algebra to M,(S). Since M,(S) has the non-trivial center, we
consider the derived algebra M, (S) = [M,(S), M,(S)], for removing
the center for the simplicity of M,(S)’. Let us denote (e; ;) by the n by
n matrix whose 7, k-entry is 1 and other entries are zeros. Similarly let
us denote (ae; ) by the matrix whose ¢, k-entry is a and other entries
are 0. Thus we have the basis of the Lie algebra of M’ := My(S)’ as
follows: sl (F) C M, (Xe;;) € M' for ¢ € {1,--- ,n}, where X is a
non-scalar monomial in S, and (Xe; ;) € M’ for any monomial X € S
with i # 7.

For a given element [ of the Lie algebra L, we define the centralizer
Cr(l) = {z € L|[z,l] = 0}. Then Cr(!) is a subalgebra of L.

For i # j and a € S, we have

[(ae:;), (es:) — (e54)] # 0.
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This shows that (ae;;) is not in the Ciy, (s, (Mn(S)()) = Z(Mn(S)}))-
Note that for any | € sln(F'), | ¢ Z(M,(S)))- For any a € S,
(ae; ;)1 —1-(ae; ;) =0if and only if a = 1.

Thus we have proved the following lemma.

LEMMA 1. The Lie algebra M' has the following standard basis
{(aei ;)11 <i < j < n,a is a non-zero monomial in S}
U {(ae;;)|1 <i<n,l+#a is a non-zero monomial in S}
U {(eiq) = (€)1 S i # j <n}.

LEMMA 2. In the skew-polynomial ring S, we have Cg(z1) = Flz1].

PROOF. For any monomial ¥ -+ zir € S, we have

i1 in
[ml,ml ...In7
i1 ) . .
— ZL'111+ (E;' _"L'il ...x:{‘xl

_ i2 i i1+1 Gn
= (]_—)\271...)\””’1)1‘11 ...xn“__o

if and only if 1 — )\g‘:l e )‘Zfl = 0. But by the definition of S there is no
such relation. Therefore, i9 = --- =i, = 0. O

LEMMA 3. For any non-trivial ideal I of M', there is an element
(a;,;) € I such that a,, is not a scalar for any p,r € {1,--- ,n}.

PROOF. Let (a;;) be an n by n matrix of scalars. Since sl,(F') is

simple, there is an element (a; ;) € I such that ap_1,-1 =1, app = —1,
and other entries are zero. Take (b; ;) € M’ such that an_1,, = 1 and
all other entries are zero. Then [(a;;), (b; ;)] is the required one. J

THEOREM 1. The Lie algebra M’ is a simple Lie algebra.
Proor. To prove this theorem let us prove the following step first.

Step I. If I is an ideal containing an element (a;;) where a,, is an
non-zero and other terms are zero, then I = M’.

Proof of Step I. Note that M; = S’ where S’ is the derived Lie algebra
of S with the skew-polynomial multiplication of S. Since M{(S) is a
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simple Lie algebra, (apnenn) € I for any non-scalar a,, € S. For any
monomial X € S, we have the following:

[(Xen,n)v (en—l,n)] = —(Xen—l,n) el
Furthermore, we have
(X en-1,1), (Xenn)] = (X ' Xen_1,) € I.

Therefore, sl,(F) C I. Also,
(1) [(Xen—l,n)’ (en,n—l)] = (Xen—l,n——l) + (_‘Xen,n) el

From the above argument, we have (Xe;;) + (—Xe;;) € I, 1 <
7,j < n for any X € S. For any a;; € S with ¢ < j, and for any
(Xei) — (Xerr) €1,(k #1,7) we have

[(aijei3), (Xeiq) — (Xewx)] = —(Xayjei5) € 1.

This is an arbitrary basis element in M’, thus I = M’. So Step I is
proved.
Using Step I, let us prove the theorem.

For any non-zero element (a,s) € I, we assume there are entries a;;
with 7 > j. By the above step, we can assume there is another non-zero
entry, ar; # 0, with i = k and j <! or k > ¢ (if not, the theorem is
proved.)

Case I. Assume there are non-zero entries in the i-th row and all other
entries are zero. If a; ; is the first non-zero entry, then there is a non-zero
entry a;;. The 4, j entry of

(2) [(aijeis) + (aieir) + -+ + (asnein), (Xeii)]

is zero and the i,é-entry of (2) is @;; X — Xa;; # 0 by the choice of
appropriate X € S. This contradicts the fact that a;; is the first non-
zero entry of the element in this ideal.

Case I1I. Assume the t, p-entry a;y, is non-zero . Then the ¢, j-entry of
the matrix

(3) [(ai,jei,j) + -+ (annenn), (Xete)]

is zero. But the t,j-entry of (3) is —Xa¢p which is non-zero where
t > ¢. This contradicts the choice of a; ;. Therefore, we have proved the
theorem. O

Clearly we have the following corollary.

COROLLARY 1. ({4, Theorem. 1.3, Theorem. 3.1]). M;(S)’ = ad(S).
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The set of toral elements of A1, (S) is the same as sl,(F). G. Benkart
proposed that the Lie algebra L which has no toral element (or ad-
diagonal) may be embedded in an extension algebra of L, which is simple.
We have the Lie algebra M (S)’ which is the toral extension of ad(S) i.e.
the Lie algebra ad(.S) has no toral element but the Lie algebra M’ has
toral elements.

Consider the Lie algebra SM,(F') with basis
Bi = {\a;;)|» € S, X is a monomial , (a; ;) € Mp(F)},
and Lie bracket
(Mai)s (bij)] = Ap(ai ;) (bij) — pA(bij)(ai ;)
for any A(a;;), (b ;) € By. Then the Lie algebra
[SM(F), SM,(F)) = SMy(F) := SM
has a basis
By
= {a7 a2y (eig)lal -2y € 8, (eiz) € Ma(F),
forisje{l,---,n}}
U{xil :v;"(e”)lxzf :UﬁL € S at least one of 41, , %,
(4) is non-zero, (e;;) € My (F), for i € {1,--- ,n}}.

PROPOSITION 1. Two Lie algebras M’ and SM], are isomorphic.

ProoF. Define an F linear map 6 : M' — SM),, which is the identity
map on sl,(F). Extend this map linearly to M’ by ((Xe;;)) = A(e; ;)
for any (Ae; ;). Then this map is one to one and onto. Thus, we have
proved the proposition. .

Let S be the quasi-polynomial ring in Introduction. S and M, (F')
are simple F-algebras, then S g M,(F) is a simple F-algebra [10].
Since S is a simple F-algebra, M,(S) is a simple F-algebra [6]. Let
(eij) be the n by n matrix such that the entry of the i-th row and j-
the column is 1 and the other entries are zero. Let us define F-linear
map 6 : S @ My (F) — M,(S) by 0(f ® (e;;)) = f(ei;) where f € S,
and(e; ;) € M,(S). Then clearly 6 is the isomorphism between them. So
we have that S ® M, (F) = M, (S).
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PROPOSITION 2. The dimension of the maximal torus of SM,(F)
with respect to the By in (4) isn — 1.

Proor. The Lie algebra SM,,(F)’ is Z™-graded Lie algebra such that
the Lie gradation is compatible with the Z"-gradation of F-algebra S.
It is straightforward that the maximal torus with respect to the basis
By in (4) is {(es) — (€;)|1 <@ # j < n}. Therefore, we have proved the
proposition. O

COROLLARY 2. The dimension of the maximal torus of SMy(F) = &'
with respect to the By in (4) is 0.

ProoOF. It is straightforward by Proposition 2. O

3. The relations between M, (S) and the Witt algebra

Let us compare the Lie algebras which are defined in this paper and
the well-known Witt algebra W (n) and its subalgebras (please refer
to the Rudakov’s paper [9] for more details on the Witt algebra and its
subalgebras, i.e. Cartan type Lie algebras.) Let us introduce the Witt
algebra W+ (n). The Witt algebra W (n) has the standard basis

Wg = {:1:111 ---xi{l@slil,--- ,in € N,1<s<n}
with the Lie bracket on basis elements as follows:
(o i Oyl -l

_lat _ Z'tx’il‘i-]l . ’z':zn+]nx;18u'

111+J1 . x:;"+]"-73u

= Ju®
The Witt algebra W™ (n) is simple. The subspace of W (n) which
is spanned by all ad-diagonals with respect to the standard basis Wg
has dimension n and the basis is {z;9:|]1 < s < n} [8]. All the simple
subalgebras of W*(n) are classified as the special type Lie algebras
S*(n), the Hamiltonian type Lie algebra H*(n), and kontact type Lie
algebras K*(n). It is well known that all those Cartan type Lie algebras
have ad-diagonal elements [9].
The Lie algebras M, (S)’ in this paper has a simple subalgebra {(a, b)
|a, b € Z} which has no ad-diagonal. Thus we have proved the following
proposition.

PROPOSITION 3. The Lie algebra M,(S)’ is not isomorphic to the
simple subalgebra of W (n).
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Let us introduce few interesting problems which are related to the
Lie algebras in this paper.

Problem 1. Find all the Lie automorphisms of M, (S)’.
Problem 2. Find all the Lie derivations of M,(S)'.

Problem 3. Find some subalgebra of M,,(S)’ which are invariant under
all automorphisms of M, (S)’.
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