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ESTIMATES OF THE BERGMAN KERNEL
FUNCTION ON PSEUDOCONVEX DOMAINS
WITH COMPARABLE LEVI FORM

SANGHYUN CHO

ABSTRACT. Let Q be a smoothly bounded pseudoconvex domain
in C" and let 2V € bQ be a point of finite type. We also assume that
the Levi form of b) is comparable in a neighborhood of 2®. Then
we get precise estimates of the Bergman kernel function, Kq(z, w),
and its derivatives in a neighborhood of z9.

1. Introduction

The purpose of this paper is to give precise estimates of the Bergman
kernel function Kq(z,w) and its derivatives near the boundary of a
smooth pseudoconvex domain ) of finite type with comparable Levi-
form.

For strongly pseudoconvex domain €2 in C”, the boundary of a suit-
able ball locally approximates b§) near the point 2" € b2 in question
and this approximation is often the first step taken when analyzing the
Bergman kernel function on Q [9, 10, 12]. When Q is weakly pseu-
doconvex domain of finite type, different approaches should be applied
according to the local geometry of 02 3, 6, 7, 11, 14, 16, 17]. In the rest
of this paper, wec let Q be a smoothly bounded pseudoconvex domain in
C™ with smooth defining function r, i.e., @ = {z € C" : r(2) < 0}, and
let K(z,w) be the corresponding Bergman kernel function.

Let A\(2),..., A\n_1(2) be the cigenvalues of the Levi-form, 80r, near
a point 2 € Q. We say Q has comparable Levi-form near 20 if there
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are a constant ¢ > 0 and a neighborhood U of 2° such that
n—1

(1.1) /\k(z)ZC-Z/\i(z), k=1,2,...,n—-1, zeU.
i=1

For example, let 7(z) = 2Rezs + (|21]2 + |22/?)? be a defining function
for a domain € in C3 near the origin. Then the Levi-form of b} satisfies
(1.1) near the origin, and hence Q has a comparable Levi-form near the
origin.

Let z° € bQ be a point of finite type m in the sense of D’Angelo
[8] and assume that the Levi-form is comparable near 2°. In this case,
the author analyzed the local geometry of b{2 near 2° and estimated the
Bergman kernel function K(z,z) on the diagonal [7]. In this paper, we
estimate Kq(z,w) and its derivatives on and off the diagonal near 2z°.

For each 2’ near 2°, we will construct a biholomorphism ®,, : C* —
Cc*, @.1(Q) = Q. depending on 2/, but with holomorphic Jacobian
uniformly nonsingular in a fixed neighborhood U of 2°. Because of the
transformation formula for the Bergman kernel function, we state our
estimates on Q,» = ®_,'(Q), that is, with respect to special coordinates
¢ = &' (2) defined for each reference point 2’ € U. For 2!, 2% € Q near
20, set ¢* = @,'(2Y), i = 1,2, 2 = n(z!) and Q, = ©.(Q), where
7 is the projection onto b§2. In the rest of this paper we let o, 3 be
multi-indices and let &’ = (ay,...,a,-1,0), &” = (0,a3,... ,0,-1,0),
etc.

THEOREM 1.1. Let §2 be a smoothly bounded pseudoconvex domain
in C™ and 2° € b§) be a point of finite type. Assume that ) has a compa-
rable Levi-form in a neighborhood of z°. Then there is a neighborhood
V of 2° such that for all n-indices o, 8 and z',2%2 € V, there exists a
constant C, g such that

a 7P
|D§1DC2KQZ/ (<17C2)|

< Ca,,@ZAl(zl)(2(n_1)+|al+'@’|)/1 . (5—2—0‘n—5n—(2(n—1)+|a'+5'|)/l,
=2

where § = (|p(¢1)|+0(C?)|+1¢h —CBl+ 3720 Tty A(2)I¢H—¢21'), and
where ¢* = ({%,...,¢}), i = 1,2, are the coordinates defined by ®,. and
the functions A;(z') are explicit functions, given by certain derivatives
ofr,and p=1r10®,.
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REMARK 1.2. In [7], the author estimated the Bergman kernel func-
tion K(z,z) on the diagonal:

m

(1.2) K(z,2) ~ ZAl(z')z("_l)/’ r(z)| 2D/
1=2
and this is the case when 2! = z2, and o, 8 = 0, in Theorem 1.1.

There is a close relation between the estimates of the Bergman ker-
nel function and the existence of the peak functions on the domains in
question. A point 20 € bQ is a peak point if there is a function f € A(Q)
such that f(2%) = 1, and |f(2)| < 1 for z € Q — {2°}. Here A(Q) de-
notes the set of functions which are holomorphic on Q. In [4, 5], the
author proposed a method, which is a modification of Fornaess and Mc-
Neal’s method [13], to construct a peak function for the domains in C”
when the optimal estimates of the Bergman kernel function are known.
Namely, for each neighborhood V' of z° € b2 we construct a regular
bumping family of pseudoconvex domains outside V', and use Bishop’s
% — % method on bumped domains, and we obtain the following theorem.

THEOREM 1.3. Let Q and 2" € bQ be as in Theorem 1.1. Then for
each small neighborhood V of 2z, there is a Hélder continuous peak

function which peaks at 2° and extends holomorphically up to ﬁ\ V.

The existence of peak functions for A({2) implies that €2 is complete in
the Carathéodory metric. Since the Carathéodory metric is smaller than
the Kobayashi metric and the Bergman metric, we obtain the following
corollary as an immediate application of Theorem 1.3.

COROLLARY 1.4. Let © and z' be as in Theorem 1.1. Then £}
is complete in a neighborhood of 2° in the Kobayashi, Bergman and
Carathéodory metrics.

2. Special coordinates and polydiscs

Let Q, 2° € b2 and U be as in Section 1. In this section we want
to show that about each point 2’ in U, there is a special coordinates
¢ about 2’ and a polydisc of maximal size on which the function r(z)
changes by no more than some prescribed small number § > 0.
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We may assume that there are coordinate functions zi,..., 2z, such
that Ig%(zﬂ > ¢ > 0for all z € U. We first take the following special

coordinates which reflects the local geometry of b2 near 2° € bQ ([7,
Proposition 2.1]).

PROPOSITION 2.1. For each 2’ € U and positive integer m, there is
a biholomorphism &,/ : C* — C™, ®,,'(2') = 0, such that

p(¢) = r(®./(())
= r(2') + Re(, + Z ajk(z’)CfZ]f

j+k<m
(2.1) skl

r_ﬁ'
Y bas ()T + O+ (GG
la'+8'|<m
la'],18'[>1
1§|(1“+ﬁ”|§m

We now show how to define a polydisc around 2’ in (-coordinates.
Set

A, (2) = max{{a;k(2)| 1 5 + k= L1 };

2.2
B2 4n(@) = max{lbuy ()] [0 + F] = b}y 2< Il <.

For each ¢ > 0, we define 7(2/, §) by
(2.3) 7(z',6) = min{(6/A,, (z’))lL 12 <yl <m}.

If we assume that the type at 20 € bQ) is m then it follows that
lajk(2)] + [barpr (2')] = ¢ > 0 for some j + k = m, or |& + B'| = m, for
all 2’€U, provided U is sufficiently small. This gives us the inequality:
(2.4) 82 <7(2,6) Som, 2 €U,
and if 8’ < ¢”, then
(2.5) (&'/8")37(2,8") S 7(2,8') S (86" 7(<,6").

The following lemma shows that |ajx(z’)| terms are major terms to define
7(2',6) in (2.3). One can refer a proof in [7, Lemma 2.4].
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LEMMA 2.2. There is ¢g > 0 (independent of 2" and § > 0) such that

lajk| > co-877/7F for some j +k < m.

By virtue of (2.2) we then have
(2.6) A () = 67" forsome 2 <[ <m.
Set 7(2’.6) = 7 for a convenicnce, and define
Rs(Z)={CeC": |G| <7, 1<k <n—1, [¢] <8}, and
Qs(2') ={®2/(¢) : ¢ € Rs(2")}-

Then by virtue of the definition of 7(z’,4), it follows that R.s(z') is
contained in Q. = ®_,'(Q?) for a fixed constant ¢ > 0 (independent of 2’
and § > 0).

In [7], the author constructed the following family of bounded pluri-
subharmonic weight functions with essentially maximal Hessian in a thin
strip near the boundary of Q. For € > 0, we let Q. = {z: r(2) < €} and
set

S(e) ={z: —e<r(z) <e}

THEOREM 2.2. For all small § > 0, there is a plurisubharmonic func-
tion g5 € C°°(§s) with the following properties:
(i) 1gs(2)| <1, z € UN .
(i1) For all L = 2;:1 b;L; at z € U N S5(6),

n—1
00gs(2)(L, L) = 772> |bil* + 62 |ba|*.
k=1

(ii) If @,/ is the map associated with a given z' € U N .S(6), then for
all € Rs(2") with |p(C)] < 4,

1070”95 © B2 )(Q)] S Cop g6~ mlo’+ ¥,

For 2/ € UN§ and § > 0, we define a biholomorphism (dilation map)
by

(27) DE/(C) = (T_lCl,.. . ’7_*71(”’_1,6—1(") = (wl,... ,wn).
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3. Subelliptic estimates for 0 in dilated coordinates

Let Q, zg and U be as in Section 1. In this section, we want to get
uniform subelliptic estimates (independent of § and z’) for d-equation
in dilated coordinates w = D% (¢) defined in (2.7). Set

(3.1) pS (w) =671 (po(Dg,)_l(w)) and QJ, = {w e C": pl,(w) < 0}.
Note that D?, (Rs(2')) = P(0;1) = {w € C" : |w;| < 1} := W and
|D*ps(w)| < Cq, independent of 2’ and 4. Set

b;j(¢) = (8p/8¢n) ' Bp/8¢;,1 < j <mn—1.

In special coordinates, we can write

i <57 < — —
aCj J(C) ac y 1 sSJIsn 1, and Ln = =,

and they form a local frame of CT!-%(U). In terms of dilated coordinates,
set

L=

LS =1(dD5).L;

9 é -1 0 .
= 5 — U4 ’ < < —
(3.2) dw; bj o (D3,)(w)d T@wn’ 1<j<n—-1, and
0
5 _ 6/ *Ln .
L3 = 5(dD?)) 5o

Then they form a local frame of CT!'%(W) in dilated coordinates.

Let D%1(W) denote the (0,1)-forms u, u = Y, _, ugdZx, with com-
ponents in C§°(W) such that Y ,_, O%uk =0on WnNH?, Then a
subelliptic estimate of order € > 0 holds in W if
(3.3) Wulll? < CQw,u) Vue DM(W),
where ||| - |||e denotes the tangential Sobolev norm of order € on forms
and Q(u, u) = ||0u))® + ||9ul|® + ||ul|* and where ¥ is the formal adjoint
of 8.

Let 22 € UNQ and § > 0 be fixed for a moment. Note that the
neighborhood W = D¢, (R;(2')) actually depends on 2z’. We will show
that (3.3) holds independent of 2z’ and 6, and this is a key ingredient to
prove Theorem 1.1.

By virtue of Theorem 2.2, there is a family of plurisubharmonic func-
tions {gs,},>0 satisfying the properties (i), (ii), (iii) of Theorem 2.2.
Set
S2(p) ={weW: —p < pl(w) <p}, W(p)={weC":pl(w)<p}
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THEOREM 3.1. For each small p > 0, there exists a C> plurisubhar-
monic function A, defined on §2,(p) such that
) 1Al <1in WnQs(p).
(ii) For all L% = Z;l:l d]-L?. at w € WnS%(p),

n—1
00X, (w)(L°, T') m 7(2',6)27(2, p8) 2 Y |52 + o]

j=1

(iii) For allw € WNQJ,(p) and for each , B, there is Cy, g such that

1070 Xy (w)] < o gp™ 7 (2, 8)1 (2, pBy I+,

Proof. Let {gs,}p>0 be the family of plurisubharmonic functions sat-
isfying the properties (i), (ii), (iii) of Theorem 2.2. Set A, = gs,0(D%,)~1,
where D¢, is the dilation map defined in (2. 7). It is clear that A, is
plurisubharmonic and I/\ |<1lin Wn 22,(p).

Let L% = >4, L where L% is defined in (3.2), 1 < j <n. By
functoriality and by the property (11) of Theorem 2.2, it follows that

= 5 5 = S \_178 _156
DON,(w) (L, L") = 88gs,(C)(d(D%) ' L%, d(DS)™'T")
n—-1 n—1
= 8895,(C) (T N 4L+ 8du L,y 4L + 58,@)
Jl j=1
n—1

~ Y T(Z 02|, 6p) 2 + 6%dn *(8p) 2
7j=1

n—1

=7(z/,6)°7(z' . 6p) 2D _|d; P + p~3[d .

J=1

Note that these estimates are independent of 2z’ and § because the es-
timates in Theorem 2.2 are independent of 2’ and §. This proves (ii).
Property (iii) follows from chain rule and the property (iii) of Theorem
2.2. [l

Note that the estimates and the constants in (2.4), (2.5) and Theorem
3.1 are independent of § and z’. Using this fact and Theorem 3.1, we
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show the following subelliptic estimates of 0 equation which is an essen-
tial ingredient to get derivative estimates for Kq(z,w). For 0 < b <1,
we set

sz{wEW:Iwi|<b}.

COROLLARY 3.2. There exist a small constant b > 0 (independent of
2’ and 6) and a constant Cy > 0 so that

(3.4) lulll?/m < C1Q(w,w)  Vu € D*'(P).

Proof. By virtue of the relations in (2.4) and (2.5), it follows that
(3.5) 7(2,6)*7(2', p8) 2 2 (8p/6) 7 = pT .
By Theorem 3.1 and (3.5), there is a small b > 0 such that for each
0 < p < b, there is a C* plurisubharmonic function A,, [A,| < 1,

satisfying

(3.6) 3ON,(w)(L?, T°) 2 o= | L)

for all w € W N S%(p). Here the estimate in (3.6) is independent of
6 and p. Note that the existence of the family of plurisubharmonic
weight functions, {A,},>0 satisfying (3.6), is a sufficient condition for
the subelliptic estimates for @ of order 1/m by the theorem of Catlin
(1]. Therefore (3.4) holds for (0,1)-forms on P, provided b is sufficiently
small. d

We also need an estimate on the 0-Neumann operator, Nj, for the
domain Q¢, = {w € C"; p?,(w) < 0}, where p?, is defined in (3.1). Using
the weighted estimates for § of Hérmander, Catlin proved that for a
smooth bounded pseudoconvex domain Q in C”?, and any A € C?(Q)

with —1 < XA < 1,

S
———u;updV
(3_7) /Qj,kzl 8zj8§k 3

< 36(||0ul|? + |0"u||?), € Dom(d)N Dom(d ).
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Let us fix b > 0 so that (3.4) holds on P,. For cach § > 0, set
M (w) = gys o (D3) " (w). By virtue of Theorem 3.1 and (3.7), we then
have a constant Cy > 0 (independent of 2z’ and §) so that

(3.8) [L)? < CL00M (L, L) (w), w € P,.

Combining (3.7) and (3.8), we obtain the following relation:

(3.9) / Ju* < CyDsull + |35l e Dom(@,) N Dom(;)

for an independent constant Cy > 0, where s and 5; refers to operators
on Q9,.

Now let g € L?M)(Qi,) and suppg C P,. Then Nzg € Dom(d5)

N Dom(8y) and by (3.9), there is a unform constant Cy so that
(3.10) HN(SQHQj,mP,, < C4H9Hszj,’ g€ L%()J)(Qi')’ supp g C B.
Note that if P? is the Bergman projection operator on Qi,, then we have

the relation, P = I ~5; Nj;0s, and the Bergman kernel function can be
written as :

(3.11) Kos (2. w) = Po¢.(2),

where ¢,,(2) is a polyradial function with center at w, and [ ¢, (z)dV =
1.

The following theorem will be used to show derivative estimates for
the kernel function. The proof of the theorem is based on some ideas
of Kerzman [15] on the smooth extension of the kernel function, and
on McNeal [16] and the author's [6] work on the derivative estimates
of the kernel function. We use the relation (3.11) and the estimates in
(3.10) as well as the crucial estimates in (3.4), the subelliptic estimates
for §-Neumann problem. One can refer a detailed proof in [6, 15, 16].

THEOREM 3.3. For K, K, cC C" with K, N K, =8, and o, 8 any
n-indices, there exists a constant C,, ; such that, for small § > 0,

IDYDL Ko (2,0)] € Cagry (z,0) € (K1 N B,N0Q%) x (Ko NP NQ%),

where P, = {w € C" : |w;| < b}.
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4. Estimates of the Bergman kernel function

In this section we prove Theorem 1.1 and Theorem 1.3 of Section 1.

Proof of Theorem 1.1. Let z',22 € U and set 2’ = w(2'), where «
is the projection onto b§2. Let ®, be the map associated with 2’ as
defined in Proposition 2.1 and set ¢! = ®_'(z%), i = 1,2. Let ¢! =
(¢, ¢3,...,¢}) € V be a point whose closest point in b2, is 0 in special
coordinates, and (% = (¢%,¢3,...¢?) € V. Set, for by to be determined,

n—1 m

6= b5 (Io(cH] + 1)+ 163 = 21+ D0 3 A GNIKk - 2,

j=11;=2
and denote D¢, (¢*) by w', i = 1,2 where A;, and D?, are defined as in
(2.2) and (2.7) respectively. We claim that ¢!,¢% € P(0;Cobgd) = {C €
C" |G < 7(2,Cobpd), 1 <j<n—1, |¢,] < Cobpd} for some Cy > 0.
Since || & |p(¢1)], it follows that

ICH < 1p(¢h)] < bod,

and hence for each j = 1,... ,n — 1, it follows, from the definition of §
and 7(2’,6), that

G2+ > A (NG

l{=2

S -G+ + 3 A ICG -+ AL (I

11:‘2 11:2
< byé.

So |¢3] < bod and Ay, (2|2 S bed for Iy = 2,... ,m. By virtue of the
important relation in (2.8), it follows that

ICFI S 7(2,bod), j=1,...,n—1

Therefore we have ¢*,(? € P:(0; Cybod), for some Cy > 0, and hence
if by is sufficiently small, then w!,w? € Dg,(P:/(O; C1b¢d)) C Py, where
b > 0 is the number as in Corollary 3.2. Note that for the special §, we
have, in dilated coordinates, that

n—1 m

0 < bo < (Ios(wh)l +lps(?)|+ il ~wdl+ 3 > Ay, (2w} —w?).
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If jw! — w?| < ay for ay small enough, then

bo

lps(w!)| + lps(w?)] > 2,

and the continuity of ps together the fact that |[D®ps(w)| < C, in Py,
independent of 4, give us

lps(w')] > bgo

provided ay is sufficiently small. Therefore the ball centered at w! of
radius ag < % lies in Q‘zs, and contains w?. Let us fix ay (independent of
z' and §). If we set K7 = {w'} and Ky = {w € C";w € P(0;b), |w! —
w] = ag} in Theorem 3.3, we have for w € K,

nglﬁg;Kszj,(wl,w)l < Ca.8,
and hence by the maximum modulus theorem,
(4.1) D5 Dig K, (w, w?)| < Co g
If, instead, |w' —w?| > ag, Theorem 3.3 immediately applies. Thus (4.1)

holds in all the cases. By the chain rule and the transformation formula
for the Bergman kernel, one has

(4.2) 11)3(15?21(9:, (C1, )| < Cogb 27 n =P p(y) §) 202710+
By virtue of (2.6), one obtains that

T(zl, 5)~2n+2—|n'—ﬁ'

(4.3) "

~ Z Al (zl)(271—2+m’+/3’|)/[1 . 6(_27,'+2_!”l+ﬁ1!)/ll
1 .
1y=2
Thus we get Theorem 1.1 combining (4.2) and (4.3). 0

In [13], Fornaess and McNeal proposed a method to construct a peak
function in C”?. In their method, we need precise estimates of the
Bergman kernel function and its derivatives, together Holder estimates
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for J-equation. Later the author [4, 5] proposed a method which uses
a bumping family of pseudoconvex domains. In this method, we do not
need the Hélder estimates for J-equation and hence can be applied to
wide class of domains in C”.

Note that (1.1) is an open condition and hence it holds for the bump-
ing family of pseudoconvex domains. Therefore we have the same kinds
of estimates for the Bergman kernel function on bumped domain Q which
touches b2 only at 2°. We show briefly how the peaking can be con-
structed. For a detailed proof, one can refer [4, 5, 13].

Let N be the interior normal to the boundary of Q at 29. Then we
technically choose a sequence of points {g,} converging to 2° and set

hn(2) = K(2,9,)/K(qn, gn)s

and then set

f(2)=1-93 cha(2),

where the constant c is chosen appropriately so that the sequence con-
verges uniformly on compact sets. Since 2° € b is a point of finite type,
the subelliptic estimate for 8 equation holds near z° on bumped pseudo-
convex domain €2 by the Theorem of Catlin [1]. Then the estimates for
the Bergman kernel function and its derivatives show that the function
f(z) is the required Hélder continuous peaking function which peaks at
20 and analytic on Q@ \ V where V is a small neighborhood of z,. This
proves Theorem 1.3.
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