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ON A CONNECTION ON A
HYPERCONTACT MANIFOLD

Hyunsuk KiM

ABSTRACT. We construct thic canonical connection associated with
a hypercontact structure. Moreover, we discuss the canonical con-
nection associated with a sub-Riemannian 3-structure. As an appli-
cation, we study the sub-symmetry property in terms of the canon-
ical connection.

1. Introduction

Several connections on contact structures have been studied by many
geometers ([4], [5], [7]). Recently, Falbel-Gorodski ([2]) defined a con-
nection on a contact structure in the sense of sub-Riemannian geometry,
which can be considered as a generalization of the generalized Tanaka
connection ([5]) on a contact Ricmannian structure.

On the other hand, Geiges-Thomas ([3]) introduced a notion of a hy-
percontact structure as a quaternionic analogue of contact Riemannian
structure.

In this paper, we shall construct a new connection on a hypercon-
tact manifold from the view point of foliated structure. That is, if
(s €y Ma)a—1,2.3 is an almost contact 3-structure compatible with a hy-
percontact structure, the foliation is defined by vector fields {&;, &2, €5}
which generate a Lie algebra locally isomorphic to so(3).

In Section 2, we give a brief review of several known connections on a
contact Riemannian structure. In Section 3, we define a new connection
D on a hypercontact manifold by a similar way as in [5]. In Section
4, we discuss a canonical connection associated with a sub-Riemannian
3-structure. As an application, we study the sub-symmetry property in
terms of the canonical connection.
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2. The case of a contact Riemannian structure

An m-dimensional manifold M (m = 2n + 1) is a contact manifold if
it admits a 1-form 7 such that n A (dn)™ # 0 everywhere on M. There
is a unique vector field £ on M such that

(2.1) n€)=1,  Len=0,

where L, denotes the Lie derivation by £. It is well known that there is
a contact Riemannian structure (¢, 7, &, g) such that

9(6, X) =n(X), 2¢(X,¢Y)=dn(X,Y), ¢*X=-X+n(X),

where X,Y € I'(TM) on M. Here and hereafter I'(.) is denoted by the
space of all sections of (.). The followings hold:

#& =0, 77(¢X) =0,
(2:2) 9(X,)Y) = g(¢X, Y ) + n(X)n(Y),

Let E be the foliation of T M generated by the Reeb vector field €. Then
E gives the orthogonal decomposition

TM=FE&D

with respect to g. By (2.1), E is a geodesic and transversally symplectic
flow with exact transversal symplectic form dn on a Riemannian mani-
fold (M, g). If, moreover, ¢ satisfies Lgg = 0, or equivalently, L¢¢ = 0,
then F can be considered as a geodesic almost Kahler flow on (M, g).

LEMMA 2.1 ([5]). On a contact Riemannian structure (¢,£,n,g), the
Riemannian connection V satisfies the following properties:
(1) V£77 = 07 V£f = Oa grvinr = 0}
(i) Vre™ =0,V,; = —2nm;,
(i) Vensgid; = —~V;m,
(iv) V,n:¢} and V@] are symmetric in i, j,
(V) V£¢ = 0.
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Tanno ([5]) defined the generalized Tanaka connection *V on a con-
tact Riemannian manifold (M, ¢,&,7,9) by

(2.3) VxY =VxY +n(X)oY —n(Y)VxE+ (Vxn)(Y)§
for X, Y € I'(TM). The torsion tensor *T" of *V is given by
T(X,Y) =n(X)eY — ¢Xn(V) = n(Y)VxE+n(X)Vy € +29(X, Y)E.

PROPOSITION 2.2 ([5]). With above notations, *V satisfies the fol-
lowings:
(i) *Vn =0, *V¢& =10,
(il) "Vg =0,
(ii) *T(X,Y) =dn(X,Y)¢ for X,Y € ['(D),
(v) *T(€,¢Y) = ~0°T(E,Y) for ¥ € I(D),
(V) ('Vx9)Y = (Vx@)Y + n(Y)oVx{ + (Vxn)(@Y )¢ for X, Y €
NTM),
(vi) *V¢ = 0 if and only if ¢ is integrable.

This connection is a natural generalization of the Tananka connection
defined on a nondegenerate, pseudo-hermitian manifold ([6]).

We suppose that M is oriented and D is oriented. Let gp be a positive
definite symmetric bilinear form on D. A triple (M, D, gp) becomes a
sub-Riemannian manifold. A contact manifold admits a sub-Riemannian
metric dn(¢-, ). Falbel-Gorodski showed the following result.

PROPOSITION 2.3 ([2]). There is a unique connection V¥ on a con-
tact sub-Riemannian manifold (M,D,€,n,9p) with following proper-
ties:

(i) VFx : (D) — T'(D) for X € I'(TM),
(i) VF¢ =0,
(i) V¥g=0,
(iv) TH(X,Y) = dn(X,Y)¢ for X,Y € I'(D),
) ,

satisfies 77 (I'(D)) C T'(D) and is symmetric.

The connection V¥ may be regarded as a natural extension of the
generalized Tanaka connection dcfined on a contact Riemannian struc-
ture in the sense of sub-Riemannian geometry.
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3. The case of a hypercontact structure

We recall the definitions of the following quaternionic analogue of an
almost contact structure.

DEFINITION 3.1. A tensor field (@a, £as Mo )a=1,2.3 is called an almost
contact 3-structure if the following conditions are satisfied:

(i) 7a(£s) = dap,
(i) ¢ads =3, €apyéys
(iil) 7o 0 ¢p = ny €apyTly,
(iV) ¢a¢ﬁ = —0qp + §a ® 78 + Z»y 5(1\[37‘?7,

where €, is the sign of a permutation of (1,2, 3).

The 7, define the subbundle D of codimension 3 in TM on which
the ¢, satisfy the quaternionic identities. The existence of an almost
contact 3-structure on a manifold M is equivalent to a reduction of the
structure group of M to Sp(n) x Sp(1). In particular, M has to be of
dimension 4n + 3.

An almost contact 3-structure is said to be compatible with a Rie-
mannian metric g if

(1) g(daX,$aY) =g(X,Y) = na(X)na(Y), X, Y €T(TM).

DEFINITION 3.2. A triple of contact forms (w;,ws,w3) on a manifold
M is called a hypercontact structure if there is a Riemannian metric
g and a compatible almost contact 3-structure (¢a,&n;Na)a=1,2,3 such
that

(3.2) 9($aX.,Y) = dwa(X,Y), X,Y € D(TM).

The following result was proved in [3].

ProrosiTiON 3.3 ([3]). With above notations,
(1) dwa(¢'aX7 ¢ay) = dwa(X,Y),
(i) dwa(és,&y) = 9(&,&,) = 1 for any cyclic permutation {«, 3,7}
of {1,2,3},
(iii) the &, are multiples of the Reeb vector fields of the wy,
(iv) the underlying almost contact 3-structure (@u,Na,&a)a=1,23 IS
completely determined if wy(€,) > 0.
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The definition of a hypercontact structure involves a triple of con-
tact forms, a Riemannian metric and an almost contact 3-structure.
Proposition 3.3 shows that the almost contact 3-structure is completely
determined (up to sign) by the contact forms (wa)a=1.2,3 and metric g.

In the following, we consider a hypercontact structure (wq,g)a=1,2.3
satisfying assumptions (4) and (B).

(A) D:="_ ker no =, ker wa.

(B) Let (¢as &y Ma)a=1.2.3 be the underlying almost contact 3-struc-
utre of a given hypercontact structure (wy, g)a=1.2,3- The vector
field £, is a positive multiple of Reeb vector field of w,, for each
.

Then we may g(€,,£3) = wa(€3) = das(a, B = 1,2,3) in the sense of
Proposition 3.3 (iv). It is obvious from (3.2) and Proposition 3.3 that

(33) [g(ng-f] = 260"75‘1'

It is well known that on contact Riemannian structure ([B]),
1
(34) Vyés = —p3X — §O‘1(L£‘,¢7,3)X for X € kerwﬂ.

LEMMA 3.4. Let (W4,9)a—1.2.3 be a hypercontact structure on M
with assumptions A and B. Then we have:

(1) VE,/f-f = G{Ydﬂg"‘,s
(ii) Vx&; € I(D) for X € (D).

Proof. By (3.4), we have

Iy
Ve &3 =—03&, — 5@1([/5,(25.1)5(2
for £, € ker w;. A direct computation gives rise to

¢J(L£4 ¢J)fn = ¢.’fL£1(C).3£(r) - Q)%}L&"I(é”)
= ¢3[€4,05860] + €5, &0] —m3([€s, €u])és
= (75/1[5.*, 5.1rm£'7] + [51750}
= 2€n4, &~ — 260476y = 0,

which proves (i).
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Similarly, we have

0(Vxts, &) = 9(X, &) + 905 (Le, 8) X, €0)

= 2 0((Le,9p) X, )

for X € I'(D). On the other hand, we note that [£,, X] € I'(D) by means
of dwg(y, X) =0 for X € I'(D). Then

g((L£ﬁ¢ﬁ)X’§a) = g([§3v¢ﬁX] - ¢ﬁ[§ﬁaX]’€a) =0,

which completes the proof of (ii). O

Lemma 3.4 (i) means that E is totally geodesic with respect to g.
Moreover, this, together with the metrical property of V, implies

(3.5) VEQLUg = €aqpByW~y-
Since dw,(£s, X) = 0 for X € I'(D), we have

(3.6) 9((Ve. 9p)Y, Z) = g(Ve, (98Y), Z) 4+ 9(Ve, Y, ¢p2)
for Y, Z € I'(D). Since V can be expressed as

QQ(V&,Y’ Z)= ﬁadw'y(Y’ (;572) + de'y(ga, ¢—yZ) - Zdw'y(ga,fﬁ'yy)
(3.7) — dw\ ([, Z], 91£a) + dwy([Z, 0], 97 Y)
+ dwy ([€a, Y], 6, 2),

Lemma 3.4 together with (3.6) and (3.7) gives rise to

29((Ve, 98)Y, Z) = 29(Ve, (98Y ), Z) + 29(Ve, Y, ¢p2)
= Ladwy (9pY, ¢y 2Z) — Eadwy(d,Y, ¢pZ)
+ d‘*"y([Z’ fa]v ¢7¢5Y) + dwv([¢BZa fa]a ¢’YY)
+ dwy([€a, $sY ), 0, Z) + dwy (o, Y], b, 082Z).

By using the Jacobi identity, the right hand side of the above formula
becomes

éadw7(¢ﬁY7 ¢’7Z) - §de~,(¢7Y, ¢ﬁZ)
+ dw’Y([Z’ 504], ¢’Y¢5Y) + dw"/([qs[)’Za fa], ¢7Y)
+ de([§a>¢BY]>¢7Z) + dw’y([gaaY]a(vasﬁZ) =0.
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Thus, we have

(3.8) (Ve 93)Y € T'(E) for Y € (D).

It follows from Lemma 3.4 and (3.8) that
(Ve,03)Y =0 for Y € I'(D).

On the other hand,

(Ve,d3)8y = Ve, (036,) — 93(Ve, &)
= VE,. E/f’)ng(x - ¢H€(y'y,3fﬁ =0

for distinct {a, 3,7}. It is easy to sce that

(VE“ d)li){a = VE,\ ((f)ﬂgn) - ¢I3(VE,, 5(1)
= v{,. Evm'yfw =&5.
By a similar way as in [4], we can show that (Vx¢,)Y = 0 if and only
if ¢, is integrable. Summing up, we have
LEMMA 3.5. Under the same station as in Lemma 3.4, the Riemann-
ian connection V satisfies

(1) VEHW[Q = €n3yWn,

(il) (Ve,08)X =
(i) (Ve,d3)éy =0, (Ve, ¢3)é, = &y for distinct o, 5,7,
(iv) (Vx¢a)Y =0 if and only if ¢, is integrable,

where X, Y € I'(D).

Now, we can construct a new connection on a hypercontact structure
by a similar way as in [5].
Define a connection D on a hypercontact structure (wq, g)a=1.23 by

3
(39) DyZ = VyZ + Z{UJQ (Y)¢(yz - ‘U(Y(Z)VY&Y + (vywn)(z)frx}’

a=1

where Y, Z ¢ T'(TM). Then torsion tensor TP of D is given by

TD Y Z) Z{wﬂ (ZSHZ wu( )¢er - wu(Z)vaa

a=1

(3.10)
+ w(\,(Y)Vqu - 2Q(¢QY5 Z)éﬂ}
for Y, Z e I'(TM).
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THEOREM 3.6. Let (wa,9)a=1.23 be as in Lemma 3.4. The con-
nection D defined by (3.9) is a unique linear connection satisfying the
followings:

(i) Dwq =0, D¢, =0,

(i) Dg=0, ,

(iif) TD(X Y) = 0 dwa(X,Y)Ea,

(IV) (Em Pa ) —d)aTD(fm Y)7
(V) (faa ;3Y) ¢ﬁ TD (grxa Y)

= 2eap, Py ¥ ~ (Le, #8)Y, TP (€a,83Y) +05TP (€4, Y)
- ¢[3[§(¥5 Y] +[§ﬂv¢3y] for a ?é /65
( 1) (gaagﬁ) = _26a[37£v;
( 1) (D(ba)fﬁ =0,
(viil) (De, @)X = 2¢apy@y X
(ix) (Dx¢a)Y =0 if and only if ¢, is integrable,

where X,Y € I'(D).

Proof. D¢, = 0 is proved by (3.9) and Lemma 3.4. By (3.9) and
Lemma 3.5, for X,Y,Z € I'(TM), we have

(DZg)(X7Y)
= Zg(XaY) _g(DZXvY) _g(X7 DZY)
=Zg(X,Y) - g9(VzX,Y) —g(X,V2Y)

— J{wa(Z2)paX — wo(X)V 2z + (Vzwa)(X)éa 1Y)
3

- g(X7 Z{WQ(Z)QSQY - wn(y)ngn + (VZWQ)(Y)fa})

a=1

= (V29)(X,Y) =0.

Thus (ii) is proved.

(iii) can be easily verified by (3.10). From Proposition 2.2 and (3.10),
we see (iv).

For the case that a # (3, we have from (3.10) that

TD(€Q7 (bHY) = €ady ¢7Y + vd)“qu

and

TP (€0, Y) = d3daY + ¢3Vy&,
= —€nj3n d)'yY + o3Vy&a.
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Thus, we have

TD (grxa ¢3Y) N ¢BTD (Eaa Y) = 26{13"; QS’YY + ¢3[£a7 Y] - [fon ¢QY]
= 25&61 ¢7Y - (Lg(, ¢B)Y

and
TD (§a1 ¢A‘7Y) + ¢[3TD (fru Y) = ¢t’7 [507 Y] + [5(17 ¢5Y]

By (3.3) and (i), we have (vi) and (vii). (viii) and (ix) are verified from
Lemma 3.5. The uniqueness of the connection is obvious. O

PROPOSITION 3.7. On a hypercontact manifold (M, wa,€ay 9)a=1,2.3
of dim 4n + 3, the following holds:

(3.11) 2ITP )% = ||Le, gl* + 16(4n) + 12.

In particular, |T”||? attains its minimum 16(4n) + 12 if and only if &,
is a Killing vector field for each .

Proof.
177 = 2| V&I + 6(4n) + 6.

By the formula (L¢, g)(X,Y) = (Vxwa ) (Y) + (Vywa)(X), we obtain
[Le, glI” = 2[VE | + 2V x€n(Vywa) X

for X, Y € T(D).
Since Vx&,(Vyw,)X = ||VE, )% — 2(4n), we get

IZe, gl* = 4 VEa|? — 4(4n),
which yields (3.11). O

4. The case of a sub-Riemannian 3-structure

Let ($as Ny Eo )a=1.2.3 be an alinost contact 3-structure on an oriented
manifold M. We suppose that dn4(£,.X) = 0 for X € ['(D). Then
the ¢, satisfy the quaternionic identities on D. We consider a smoothly
varying positive definite symmetric bilinear form ¢gp on D. Then (D, gp)
is called a sub-Riemannian 3-structure on M. From (3.3) and Lemma
3.4, a hypercontact structure (w,,,g)n-1.2.3 satisfying the assumptions
A and B, is an example of a sub-Riemannian 3-structure whose sub-
Riemannian metric is the restriction of g to D.

Note that the sub-Riemannian metric g has a natural extension to a
Riemannian metric (, ) on M by setting &, (o = 1,2,3) to be orthonor-
mal to D.
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THEOREM 4.1. Let (M, D, gp) be a sub-Riemannian 3-structure with
the underlying almost contact 3-structure (da, Mo, &a)a=1,2,3. Then there
is a unique connection D with following properties:

(i) Dx : (D) — (D) for X e T(TM),
(i1) D€y =0,

(iii) Dgp =0,

(iv) TP(X,Y) = S0 dna(X,Y)éa, X,Y €T(D),

(v) the sub-torsion 72 of D defined by 72 (X) := TP (¢4, X) satisfies
2 (T(D)) C T(D) and symmetric,

21

(vi) TP (arép) = —2€a8y&y-

Proof. Let X,Y,Z € T'(D). Asis Riemannian geometry, (i), (iii) and
(iv) uniquely determine DxY by virtue of the formula

=2(DxY,Z)+ (Y,[X,Z]| + T(X, Z))
+(X, [V, Z] + T(Y, 2)) + (2, [V, X] + T(Y, X)).
Because of (ii), it remains only to define D¢, X. Since D¢, X = [£q, X]+
Ta(X), the formula
£a<X7Y) = <DEQX7 Y> + <Xa DEQY>
= ([€a, X1, Y) + ([€a, Y], X) +2(r7(X),Y)

determines 72(X) By (ii), TP (£4,€3) = —[a,€p), which determines
TD(é.ou{ﬁ)' g

COROLLARY 4.2. The connection D has following properties:
(i) dna(X,Y) = %(TD(X,Y)),
(if) 2(TP(€a, X),Y) = (Le, 9p)(X,Y)
for X,Y € I'(D).

The curvature of this connection is given by
RP(X,Y)Z = DxDyZ — DyDxZ — Dix y)Z.

Now we study the sub-symmetry property in a situation of a sub-
Riemannian 3-structure. Recalled notion of sub-Riemannian symmetric
space.
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A local isometry between sub-Riemannian manifolds (M, D, gp) and
(M', D', gi) is a diffeomorphism v : U € M — U’ C M’ between open
sets such that ¢, (D) = D’ and V*gp = gp. In the sub-Riemannian 3-
structure case, it can be seen that 1* (w. ) = *w,’ and 1. (£,) = &, for
each . Indeed, if ¢/ (w,) = Fwy’ with a # 3 then such a v™ contradicts
to the sub-symmetric property. If ¢ is globally defined of M to M’, we
say that 1) is isometry.

Note that an isometry ¢y : A/ — M’ is an affine map with respect
to the adapted connection, that is, D;, yv.Y = ¢.(DxY) for X,Y €
N(TM).

A sub-Riemannian symmetric space (or sub-symmetric space) is an
homogeneous sub-Riemannian manifold (M, D, gp) such that for every
point 2o € M there is an isometry 3 such that 1(z¢) = zy and . ]DI(, =
—1, which is called a sub-symmetry at zy. Then we have:

THEOREM 4.3. A sub-Riemannian manifold with sub-Riemannian
3-structure is a locally sub-symmctric space if and only if the following
conditions are verified:

(i) DxTP =0,
(ii) DxRP =0
for all X € I'(D).

Proof. Suppose that M is a sub-symmetry space. The sub-symmetry
¥ is an affine map with respect to the canonical connection D given in
Theorem 4.1. We compute for X, Y, Z € I'(D)

e (VZTP)X.Y) = (Dy. 2T7) (0. X, 0.Y) = ~(DzTP)(X,Y).
By Theorem 4.1 (vi), we have that ¢.(DzT?(X,Y)) = DzTP(X,Y).
Therefore we have
(DLT”)(X,Y) =0.
Now, it follows from Theorem 4.1 (v) that
77”)*(1)27-‘[)()(7 Eu)) = 7DZTD(X7€0¢)~
On the other hand,

. (DzT"(X,€4))
= D'L'Y*ZTI)(IL)*‘/Y-; ,L')*gn)
- D(MZ)TD(_X’ S”) = DZTD(ngly)v
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so that (DzTP)(X,&,) = 0. Finally by Theorem 4.1 (ii), we have

D;TP (a,€5) = Dz(T" (€a,€5)) = TP (Déa, €p) — TP (§ar Dz&p) = 0.

Hence, (DzTP)(£4,&5) = 0. We have (ii) by a similar way.

Conversely, suppose the conditions (i) and (ii). We will find dif-
ferential equation which must be satisfied by the curvature and tor-
sion tensors of the connection D along the geodesic rays. Suppose
{X:} = {X1, Xany Xan1 = &, Xant2 = &2, X4ng3 = &3} is an
adapted frame at the point p € M where dn,(X1,X2) # 0 for each
a = 1,2,3 and denote by the same symbols {X;} the frame obtained by
parallel translation along geodesic rays. Our basic arguments follow [2}.

Let Z = Y, a’X; be a direction at p. Then Z = 37, a’X; is the
tangent along the geodesic ray in this direction. Write also Z = Z’ +
a&, + b€y + c€3 where Z' € T'(D). Using condition (i), we get

Dz(R(X:, X;)Xy)
= Dz’ tag +bea+ogs (R(Xi, X;3) X0)
= aDg, (R(Xi, X;)X1) + bDg, (R(Xi, X;) X1) + cDe, (R(X;, X;) X))
= ahi ' Dix, x) (R(Xi, X;)X1) + bhy ' Dix, x,) (R(Xi, X5)X0)
+ chy ' Dix, x5 (R(X:, X;5) X1)
- (ahl—l + chg ) 2De, (R(X, X;) X1)
— (ah! + bhy Y3 De, (R(X;, X;) X))
— (ahy* + ch3')h De, (R(X:, X;) X))

and analogously for the torsion tensor, where h, := 1, ([X1, X2]) for
each a is a function. Moreover it may be simplified as followings:

— (ah7! + chy Mho De, (R(Xi, X;)X1)
— (ahTY 4 bhy s De, (R(X:, X;) X))
— (ahg " + chg "Yhy De, (R(X:, X;) X1)
ahghs + bhghi + chihs
T hihgohs Dix, x.)(R(Xi, X;) X))
— Dz(R(X:, X;)X1).




On a connection on a hypercontact manifold 423

Therefore
2D (R(X:, X;)X)
= ahi ' Dix, x,)(R(X;. X;) X))
(4.1) +bhy ' Dy, ) (R(X, X)) X))

+ chy ' Dix, x, (R(XG, X)) X))
B (ahgh;g + bhshi + chihy
}L1h2h3

)Dx, x (B{Xi, X5) X1).

Next, to find the function h, along the geodesic ray determined by
7 = 7'+ a&; + b€y + €3, we compute

o = — 2a(D2TP) (X, Xy)

= —nalahy "Dy, vy TP) (X1, X2)
(4.2) + (bhy  (Dpx, x TP)(X 1, X)
+ chy N (Dix. xy T7) (X1, X2))

ahshs + bhahy + chihy

[t D ‘ TD X ,X

+77 ( hlhgh"{ )( [.Yx,Xz] )( 1 2)

for cach o = 1,2, 3. Notice (4.1) and (4.2), the rest of the proof follows

[2, Theorem 2.1]. o
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