DOI QR코드

DOI QR Code

CH4로 환원된 페라이트를 이용한 CO2 분해

Decomposition of CO2 with Reduced ferrite by CH4

  • 신현창 (아주대학교 재료공학과) ;
  • 정광덕 (한국과학기술연구원 나노환경연구센터) ;
  • 주오심 (한국과학기술연구원 나노환경연구센터) ;
  • 한성환 (한양대학교 화학과) ;
  • 김종원 (한국에너지기술연구원 수소에너지센터) ;
  • 최승철 (아주대학교 재료공학과)
  • 발행 : 2002.07.01

초록

페라이트를 이용한 $CO_2$분해 반응에서 부분 산화로 CO와 $H_2$의 제조가 가능한 C $H_4$를 사용하여 CuF $e_2$ $O_4$와 NiF $e_2$ $O_4$를 환원시킨 후, 환원된 페라이트를 이용하여 $CO_2$분해 반응 연구를 진행하였다. C $H_4$와 페라이트의 환원 반응에서, $700^{\circ}C$부터 $H_2$와 CO가 생성되었으며, 80$0^{\circ}C$까지의 반응에서 페라이트는 산소부족형 철산화물(Fe $O_{1-{\delta}}$(0$\leq$$\delta$$\leq$1))과 금속 Cu와 Ni의 혼합물 상태로 환원되었다. 환원된 페라이트를 이용한 $CO_2$분해 반응에서, 환원된 CuF $e_2$ $O_4$와 NiF $e_2$ $O_4$보다 높은 반응성을 나타내면서 더 많은 양의 $CO_2$를 분해하였다 이 반응에서 $CO_2$분해는 산소부족형 철산화물의 산화에 의해서만 일어났고, 치환된 2가 양이온은 산화되지 않은 금속 상태로 존재하였다. 이와 같은 결과를 통하여 C $H_4$를 이용하여 페라이트를 환원시킨 후, $CO_2$를 분해하는 공정은 $H_2$와 CO 같은 유용한 가스 제조는 물론 이를 이용하여 $CO_2$도 분해할 수 있는 활용가치가 매우 높은 공정으로 평가된다.

The reduced ferrites, reduced NiF $e_2$ $O_4$ and CuF $e_2$ $O_4$, by C $H_4$ were applied to $CO_2$ decomposition to avoid the greenhouse effects. At the reduction reaction above $700^{\circ}C$, $H_2$ and CO were generated by partial oxidation of C $H_4$ After the reduction reaction up to 80$0^{\circ}C$, the spinel structure ferrites changed to mixture of the oxygen deficient iron oxide (Fe $O_{(1-{\delta})}$(0$\leq$$\delta$$\leq$1)) and the metallic Ni or Cu. The rate and quantity of $CO_2$ decomposition with reduced CuF $e_2$ $O_4$ were larger than those with reduced NiFe $O_4$. The $CO_2$ gas was decomposed by oxidation of the oxygen deficient iron oxide. The metallic Cu and Ni were not oxidized and remained in a metallic state up to 80$0^{\circ}C$. The $CO_2$ decomposition reaction with the reduced ferrite by C $H_4$ gas is excellent process preparing useful gas such as $H_2$and CO and decomposing $CO_2$ gas.

키워드

참고문헌

  1. Carbon v.17 Morphological Changes in an Iron Catalyst and the Formation of Carbon Fibers in the C-H-O-Fe System A. Sacco Jr.;R. C. Reid https://doi.org/10.1016/0008-6223(79)90034-4
  2. Nature v.346 Complete Reduction of Carbon Dioxide to Carbon Using Cation-excess Magnetite Y. Tamaura;M. Tabata https://doi.org/10.1038/346255a0
  3. J. Chem. Soc. Faraday Trans. v.88 Adsorption of CO₂on Oxygen-deficient Magnetite: Adsorption Enthalpy and Adsorption Isotherm K. Nishizawa;T. Kodama;M. Tabata;T. Yoshida;Y. Tamaura https://doi.org/10.1039/ft9928802771
  4. J. Mater. Sci. v.29 Decomposition of Carbon Dioxide to Carbon by Hydrogen-Reduced Ni(Ⅱ)-bearing Ferrite H. Kato;T. Kodama;M. Tsuji;Y. Tamaura https://doi.org/10.1007/BF00349965
  5. J. Mater. Sci. v.28 Decomposition of CO₂and CO into Carbon with Active Wustite Prepared from Zn(Ⅱ)-bearing Ferrite T. Kodama;M. Tabata;K. Tominaga;T. Yoshida;Y. Tamaura https://doi.org/10.1007/BF00357836
  6. J. Mater. Sci. v.28 CO₂Decomposition with Oxygen-deficient Mn(Ⅱ) Ferrite M. Tabata;Y. Nishida;T. Kodama;K. Minori;T. Yoshida;Y. Tamaura https://doi.org/10.1007/BF00400881
  7. J. Kor. Ceram. Soc. v.37 no.2 Crystallization of Ferrite Powder Using Ultrasonic Wave H. C. Shin;J. H. Oh;J. C. Lee;S. H. Han;S. C. Choi
  8. Phys. Stat. Sol. (a) v.189 no.3 The Carbon Dioxide Decomposition Reaction with $(Ni_xCu_{1-x})Fe_2O_4$ Solid Solution H. C. Shin;J. H. Oh;J. C. Lee;S. H. Han;S. C. Choi https://doi.org/10.1002/1521-396X(200202)189:3<741::AID-PSSA741>3.0.CO;2-J
  9. J. Mater. Sci. v.28 Carbon Dioxide Decomposition into Carbon with the Rhodium-bearing Magnetite Activated by H₂-reduction K. Akanuma:K. Nishizawa;T. Kodama;M. Tabata;K. Minori;T. Yoshida;M. Tsuji;Y. Tamaura https://doi.org/10.1007/BF00400865
  10. J. Mater. Sci. v.29 CO₂Decomposition with Mangano-wustite M. Tabata;H. Kato;T. Kodama;T. Yoshida;M. Tsuji;Y. Tamaura https://doi.org/10.1007/BF00351423
  11. Aoolied Catalysis, A: General v.142 no.1 Catalytic Acceleration for CO₂ Decomposition into Carbon by Rh, Pt or Ce Impregnation onto Ni(Ⅱ)-bearing Ferrite M. Tsuji;T. Yamamoto;Y. Tamaura;T. Kodama;Y. Kitayama https://doi.org/10.1016/0926-860X(96)00050-6
  12. Mater. Res. Bull. v.30 no.8 CO₂Decomposition to Carbon by Ultrafine Ni(Ⅱ)-bearing Ferrite at 300℃ T. Kodama;Y. Wada;T. Yamamoto;M. Tsuji;Y. Tamaura https://doi.org/10.1016/0025-5408(95)00077-1
  13. Energy v.16 no.7 Theoretical and Experimental Investigation of the Carbothermic Reduction of Fe₂O₃ Using Solar Energy A. Steninfeld;E. A. Fletcher https://doi.org/10.1016/0360-5442(91)90061-P
  14. Energy v.19 no.7 A New Reversible Chemical System for Efficient Utilization of Carbonaceous Compounds K. Mimori;T. Togawa;N. Hasegawa;M. Tsuji;Y. Tamaura https://doi.org/10.1016/0360-5442(94)90015-9
  15. Energy v.20 no.9 Enhanced Conversion of CO₂with a Mixed System of Metal Oxide and Carbon M. Tsuji;T. Sato;M. Tabata;Y. Tamaura https://doi.org/10.1016/0360-5442(95)00034-E
  16. Energy Convers. Mgmt. v.37 no.6-8 CH₄ Utilization and CO₂ Mitigation in the Metallurgical Industry via Solar Thermochemistry A. Steinfeld;P. Kuhn;Y. Tamaura https://doi.org/10.1016/0196-8904(95)00341-X
  17. J. Kor. Ceram. Soc. v.37 no.1 Decomposition of H₂O with Ferrite Powders for Hydrogen Generation H. C. Shin;K. D. Jung;S. H. Han;S. C. Choi
  18. Constitution of binary alloy(2nd) M. Hansen;K. Anderko
  19. Chem. Mater. v.13 no.4 Mechanism of M Ferrite (M=Cu and Ni) in the CO₂ Decomposition Reaction H. C. Shin;S. C. Choi;K. D. Jung;S. H. Han https://doi.org/10.1021/cm000658b
  20. Adv. Mater. v.12 no.19 Carbon Nanotube RLC Circuits N. P. Produkina;E. R. Shishchenko;O. S. Joo;D. Y. Kim;S. H. Han https://doi.org/10.1002/1521-4095(200010)12:19<1444::AID-ADMA1444>3.0.CO;2-J
  21. J. Kor. Ceram. Soc. v.37 no.4 Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber M. S. Kim;W. J. Woo;H. S. Song;Y. S. Lim;J. C. Lee