References
- Plant & Soil v.64 Studies on cyclic β-1,2-glucans obtained from periplasmic space of Rhizobium trifolii cells Abe, M.;A. Amemura;S. Higashi https://doi.org/10.1007/BF02372514
- Appl. Environ. Microbiol. v.56 Excessive excretion of cyclic β-(1→2)-glucan by Rhizobium trifolii trifolii TA-1 Breedveld, M. W.;L. P. T. M. Zevenhuizen;A. J. B. Zehnder
- J. Gen. Microbiol. v.56 Osmotically-induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47 Breedveld, M. W.;L. P. T. M. Sevenhuizen;A. J. B. Zender
- J. Bacteriol. v.176 Synthesis of glycerophosphorylated cyclic β-(1→2)-glucans by Rhizobium meliloti ndv mutants Breedveld, M. W.;J. S. Yoo;V. N. Reinhold;K. J. Miller https://doi.org/10.1128/jb.176.4.1047-1051.1994
- Appl. Environ. Microbiol. v.58 Cyclic β-glucans of members of the family Rhizobiaceae Breedveld, M. W.;K. J. Miller
- Appl. Environ. Microbiol. v.61 Effect of phosphate limitation on synthesis of beriplasmic cyclic β-(1→2)-glucans Breedveld, M. W.;A. J. Benesi;K. J. Miller
- J. Bacteriol. v.177 A novel cyclic β-1, 2-glucan mutant of Rhizobium meliloti Breedveld, M. W.;J. A. Hadley;K. J. Miller https://doi.org/10.1128/jb.177.22.6346-6351.1995
- J. Bacteriol. v.326 Molecular dynamics simulations of cyclohenicosakis[(1→2)-(β-D-gluco-henicosapyranosyl)], a cyclic-(1→2)-β-D-glucans(a 'cyclosophoraoses) of DP 21 Choi, Y.-H.;C.-H. Yang;H.-W. Kim;S. Jung
- J. Incl. Phenom. v.2 Preparation of cyclosophoraose-A and its complex-forming ability Koizumi, K.;Y. Okada;M. Ikeda https://doi.org/10.1007/BF00662259
- J. Incl. Phenom v.36 Complex forming abillity of a family of isolated cyclosophoraoses with erogosterol and its monte carolo docking computational analysis Kwon, C.;Y.-H. Choi;N. Kim;J. S. Yoo;C.-H. Yang;H.-W. Kim;S. Jung https://doi.org/10.1023/A:1008050432556
- J. Microbiol.Biotechnol. v.11 Recovery of cholesterol from the β-cyclodextrin-cholesterol complex using immobilized cyclomaltodextrinase of akalophilic Bacillus sp. KJ 133 Kwon, H.;H. Jung;H. Kwak
- Carbohydr. Res. v.334 Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1→2)-(β-D-glucopyranosyl), by cyclic-(1→2)-β-D-glucans(cyclosophoraosas), and by cyclomaltoheptaoses (β-cyclodestrins) Lee, S.;D.-H. Seo;H.-W. Kim;S. Jung https://doi.org/10.1016/S0008-6215(01)00178-1
- J. Microbiol. Biotechnol. v.11 Inclusion complexation of a family of cyclosophoraose with indomethacin Lee, S.;C. Kwon;Y. Choi;D.-H. Seo;H.-W. Kim;S. Jung
- Annu. Rev. Microbiol. v.46 Exopolysaccharides on plant-bacterial interactions Leigh, J. L.;D. L. Coplin https://doi.org/10.1146/annurev.mi.46.100192.001515
- Science v.231 Osmotic adaptation by Gram-negative bactia: Possible role for periplasmic oligosaccharides Miller, K. J.;E. P. Kennedy;V. N. Reinhold https://doi.org/10.1126/science.3941890
- J. Bacteriol. v.170 Phosphoglycerol substituents present on the cyclic β-(1→2)-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol Miller, K. J.;R. S. Gore;A. J. Benesi
- E. Coli. J. Microbiol. Biotechnol. v.9 Characterization of the β-cyclodextrin glucanotransferase gene of Bacillus firmus var. alkalophilus and its expression Park, T.;H. Shin;Y. Lee
- Plant Mol. Biol. v.6 Rhizobial lipo-oligosaccharides answers and questions Spaink, H. P.
- J. Org. Chem. v.43 Rapid chromatographic technique for preparative separations with moderate resolution Still, W. C.;M. Kahn;A. Mitra https://doi.org/10.1021/jo00408a041
- FEMS Microbiology Lett. v.35 Selective synthesis of polysaccharides by Rhizobium trifolii, strain TA-1 Zevenhyizen, L. P. T. M. https://doi.org/10.1111/j.1574-6968.1986.tb01496.x