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An Approximate Evidence Combination Scheme for Increased Efficiency

Gyesung Lee'

ABSTRACT

A major impediment in using the Dempster-Shafer evidence combination scheme is its computational complexity, which in general is
exponential since DS scheme allows any subsets over the frame of discernment as focal elements. To avoid this problem, we propose a method
called approximate evidence combination scheme. This scheme is applied to a few sample applications and the experiment results are compared
with those of VBS. The results show that the approximation scheme achieves a great amount of computational speedup and produces belief
values within the range of deviation that the expert allows.

7I9JE : evidence combination, uncertaint, Dempster-Shafer scheme

. Introduction

thodologies restrict the problem to singleton hypotheses

A major impediment in using the Dempster-Shafer (DS)
evidence combination scheme is its computational comple-
xity, which in general is exponential since DS scheme allows
any subsets over the frame of discernment as focal eleme-
nts[2]. For example, if the size of the frame of discernment
is p, then the maximum possible number of focal elements
is 2°. Therefore, when two belief functions, each with one
variable (attribute), are combined, the total number of pos-
sible set intersections can be 2”. If each variable can have
multiple values, then the complexity order for evidence com-
bination of n variables becomes 2", where r is a; - a2--an and
a; represents the number of possible values for a variable
vi [31.

To avoid possible exponential explosion of the focal

elements, various methods have been suggested. Some me-
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where the belief functions allow only singleton hypothesis.
Other methodologies allow multiple hypotheses but those
must map into a node in the hierarchy [2].

Another simple solution was partitioning technique, where
the overall inferencing structure is divided into partitions,
these partitions form a their own problem subspace, and thus
reduce the problem size. This technique is useful especially
when the inferencing network is very large and complex,
as can happen in real-world applications. However, this
technique introduced other disadvantages, e.g., duplicate and
therefore repetitive evidence seek that makes the overall
reasoning longer.

Zarley [4] and Shenoy [2] have developed efficient com-
putational algorithms to work on general network structures.
The main idea of these methods is to reduce the size of frame
of discernment from the entire set to a subset that is relevant
among variables (joint variable) and then to propagate inter—

mediate results to neighboring joint variables. This method
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is called local computation and propagation.

We focus our efficiency issue on an inferencing structure
in which the knowledge is represented by a network or
hierarchical model or both. The hierarchical network is com—
prised of nodes representing primary attributes or charac—
teristics. These primary characteristics are related each
other, i.e., a characteristic is derived by other supporting
characteristics. The links in the knowledge structure repre-
sent the direction in which the node is derived. On the other
hand, the methods developed by [2] and [4] use more general
form of knowledge structure. In their structure, they allow
bi~directional links between two related nodes. When new
evidence is observed for a node, the belief in the node itself
is first updated and the change is propagated to others ad-
jacent nodes. In some applications, the two relations, ‘sup~
port’ and ‘supported by’ are defined. In this paper, a few
methods are compared on how belief is computed, updated,
and propagated in the structure where hypothesis nodes are
hierarchically related. We review in Section 2 two efficient
methodologies for evidence combination schemes, Zarley’s
DELIEF and Shenoy’s VBS (valuation-based system), wor-
king on network structures. Our focus of this paper is the
development of an efficient computational algorithm. In sec—
tion 3, we introduce our approximation scheme that greatly
simplifies the evidence combination and thus is able to
produce a great deal of efficiency gain. We then compare
the performance of the scheme with that of two other meth-
odologies. In addition to the approximation scheme we deve-
loped an belief combination scheme that works efficiently
in hierarchical structure. This is discussed in Section 4.
Finally, Section 5 concludes the paper.

9. DELIEF and VBS

Zarley’s DELIEF transforms a general network model into
a Markov tree for local computations and belief propagation.
Nodes in the network represent singleton or set hypotheses,
and links represent relations between hypotheses. For
example, if presence of A = presence of B, the network model
established a pair of links between nodes A and (A, B), and
B and (A, B), where (A, B) represents a joint node of A and
B. The basic idea of using Markov tree is that size of the
nodes in the tree is balanced and that the size of joint
variables at nodes of the tree is smaller than the size of the
overall frame. Therefore, complexity of the computations can
be reduced to 2%, where k is size of the maximum node (in

terms of the number of variables) in the tree.

Neighboring nodes in Markov network are repetitively
merged to create a Markov tree. The resultant nodes contain
more components than the original nodes but the tree
conversion algorithm is made to keep the size of merged node
as small as possible by choosing two nodes which share
maximum number of components. The order of the com-
putational complexity is determined by the size of the max-
imum node. Therefore, assuming “True’ and ‘False’ for each
variable, belief computation in Markov tree can reduce the
computational complexity from 2" to 2k, where n is the size
of entire frame, k is the maximum size of node in Markov
tree, and k is usually less than or equal to n. The saving
factor is defined as the ratio of computational complexities.
The saving factor in this case is 2/2% = 2°7%,

The advantage of this scheme is validated when the saving
factor is large enough to compensate the overhead resulting
from the conversion process and local propagation. When the
dégree of linkage among nodes in the network is very high,
then the Markov tree conversion may not reduce the size of
maximum node sufficiently to achieve significant saving in
the computation.

As a simple example, a frame of discernment is defined
by four variables, a, b, ¢, and d, and rules expressing their
relationships are given in (Figure 1)(a) and the corresponding
Markov network and Markov tree are illustrated in (Figure
1)(b) and (c), respectively. In this case the maximum node
size is the same as the frame of discernment, therefore, there
is no computational gain on a Markov tree. Overhead in the
tree generation and putting together local computations even
makes this scheme computationally more expensive than a
straight DS computation.

ifa&bthend
if a & c then d
if a & c then d

(a) rules

@‘@ Co2a D Coead

(b) Markov network (c) Markov tree
(Fig. 1) A simple Markov tree generation



Shenoy’s valuation-based system (VBS) develops a more
efficient mechanism for computation. Like DELIEF [4], he
achieves a great amount of computational saving by utilizing
the local computations and propagation over the general
inferencing network. Furthermore, his system made unne-
cessary the conversion to other form of structures, e.g., Mar-
kov tree. Two major operations, combination and margina—
lization, are performed for computing the belief values for
each variable in the inferencing network. Combination is used
for evaluating belief functions for joint variables, and
marginalization is used for coarsening the belief functions to
a focused subset of variables by deleting irrelevant variables.
These two operations are components of a fusion algorithm
for belief function computation. The basic idea of this algo—
rithm is to successively delete variables until a final goal
variable is left. When a variable is deleted, relevant belief
functions are combined by using DS computation over the
variables which are union of joint variables and then the
generated belief function is coarsened with respect to target
variable(s), where target variables are those that are affected
by combined belief functions, except for the deleted variable.
Though VBS can always produce efficient performance, the
exponential growth of computations over the frame of

discernment cannot be avoided in the worst case.

3. Approximation method

Two general methodologies discussed above still face the
exponential computational complexity even though the over-
all performance is greatly enhanced. In an inferencing struc—
ture, supporting and concluding nodes which are directly
linked form a frame of discernment and thus the size of frame
of discernment is reduced to the one of locally relevant
attributes. However, if the size of the inferencing structure
is large and complex, the local computation could be a bott-
leneck in overall performance. The approximation scheme
separates the LHS (evidence) and RHS (conclusions) of rules
for belief function computation. Instead of applying DS
computation schemne to the hypothesis space consisting of set
of evidences and conclusions that make up a rule (as would
be done in [2] and [4]), we create the belief function for a
rule in such a way that belief values of the conclusion hypo-
theses are computed by multiplying minimum basic probabi-
lity assignment (bpa) of the LHS evidences with the belief
function associated with the rule.

We performed an experiment with approximation scheme
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using a set of test problems, and compared the result with
that of Shenoy’s VBS. We were able to show that the compu-
tational gain using approximation is up to a hundred times
over VBS. We implemented two programs in Lisp, one for
our approximation scheme and the other for VBS. We made
up a variety of test cases that cover a number of possible
situations. The efficiency is determined in terms of compu-
tation speed using different test cases and the computation
speed is obtained by measuring the time that the entire
computation takes. We used Lisp built-in time checking fu-
nction for measuring the computing time.

The experimental cases and results are summarized in
<Table 1> and <Table 2>, respectively. Casel and Case2
contain 4 and 5 variables, respectively, and Case3 and Case4
contain 8 variables. Links in Case3 are much more populated
than in Case4. From <Table 2>, we verify that the gain of
the approximate scheme increases exponentially as the
number of variables increases and that there is no difference
with respect to gain between densely linked network (Case3)
and sparse network (Cased). In cases where there are a
number of attributes and rules, applying regular DS scheme
based on Shenoy’s VBS to the entire rule base still requires
a tremendous computational cost.

We obtained a great amount of computational saving from

approximate scheme but in exchange of a loss of

{Table 1> Four sample problems

Case 1 Case 2

if a & b then h with bl
if a & c then h with b2
if b & ¢ then h with b3

if ab & ¢ then h with bl
if b & d then h with b2
if ac and d then h with b3

case 3

Case 4

if ab,c,d & e then h with bl
if bede & f then h with b2
if ¢ def,& f then h with b3
if abde & f then h with b4

if ab & d then h with bl
if bc & e then h with b2
if ¢f & g hen h with b3
if a & f then h with b4

Table 2) Efficiency Comparison

VBS Approx. Gain
Casel (4 vars) 1.26 sec 14 sec 9.0
Case2 (5 vars) 243 sec .14 sec 174
Case3 (8 vars) 17.0 sec 17 sec 100.0
Cased (8 vars) 155 sec .16 sec 9.9

accuracy. We tested two schemes with randomly generated
belief values of evidences (conditions) and belief values of
conclusions, and performed a total of 300 different belief

combinations for each test problem. <Table 3> summarizes
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the occurrences of differences of two results, each from two
schemes. In most cases the values of approximation scheme
are greater than those of VBS scheme. This shows that when
the number of variables is small then the difference in belief
value between two schemes is insignificant. But as the size
of the problem increases the difference becomes significant.
We also notice that the difference distribution spreads out
over a higher band of difference values. In Casel, 92% of
belief combinations show that the difference is less than .1
and 81% of cases are in range of .05-.14 in Case2. 75% of
cases fall into a wider range of .30-.49 and the average
difference is .392. The average difference implies that the
approximate scheme generates belief values .392 higher than
the regular DS scheme.

From the experiment, we observed of VBS that belief
values of goal variables after belief combination drastically
drop even though belief values of the conditions (variables)

are relatively high. This creates a big concern in some ap- -

plication domain, where most of evidences don’'t have high
degree of belief and thus applying regular DS based on VBS
to this domain may result in unacceptably low belief values
for the conclusions. From the experience we can conclude
that the exact belief values of the hypotheses are not im-
portant. Rather the ranks of those are more meaningful in

analyzing the conclusions.

(Table 3) Difference distribution

Casel Case2 Case3 Cased
0 -0 277 188 1 6
10 - 19 23 112 2 135
20-29 0 0 36 138
30 -39 0 0 112 21
40 - 49 0 0 113 0
50 - 74 0 0 36 0
5 -9 0 0 0 0

Even in the approximation scheme, a large number of rule
firing and a large size of frame of discernment of goal at—
tributes still need a large amount of computational resources
for DS computations. In the following section we describe
an efficient DS belief computation algorithm used in conjun-
ction with approximation scheme.

4. An efficient DS belief combination algorithm

In our revised evidence combination scheme, we generalize
the singleton hypothesis assumption by allowing multiple hy-

potheses which, unlike Gordon’s or Shenoy’s definition, could
be any subset of hypotheses. In [1], the hypothesis set was
constrained to any subset of hypotheses under a parent
hypothesis in the hierarchy. Note that set of hypotheses for
evidence combination cannot come from the different parent
groups or different levels. The new écheme is to keep the
number of focal elements small by collecting relevant focal
elements between two-belief functions, where relevant focal
elements are those that share common hypothesis in their
focal elements. From now on one of two belief functions is
called ‘existing belief function’ and the other ‘new belief
function’.

The number of focal elements in the existing belief function
is determined by the contents of the new belief function and
domain knowledge structure. In our scheme, any subset of
child hypotheses under a parent node can be asserted from
a rule. Subset nodes are not represented in the hierarchy, but
whenever a basic probability assignment (bpa) is assigned
to it, it is stored in its parent node.

Let Bel; be the belief function that represents the existing
belief function, and Bels is a new belief function that repre-
sents the belief values from the rule to be fired. m: and me
represent their corresponding basic probability assignments.
The goal of the DS evidence combination scheme defines a
new bpa, denoted mi® mg and their corresponding belief
function, denoted Beli® Belz.

Definition : If two focal elements each from Bel: and Belz
satisfy either subset or superset relation, then
they are called inclusive, otherwise, they are

called exclusive.

From the regular DS scheme we recognized a fact that, after
evidence combination, the new bpa’s and subsequent belief
functions for exclusive focal elements can be computed by
simply multiplying a certain constant factor. To derive this
constant factor, we bring up a few notational definitions.
Without losing generality, we can define Belz with two
focal elements : ng and m (One can easily extend to any
number of elements.). Focal elements in Bel;, which is
accumulated up to now are divided into two parts : (i) Part
A :inclusive focal element (IFE) group and (ii) Part B :
exclusive focal element (EFE) group as shown in <Table 4>.
For Part A, the regular DS scheme is applied to get a new
bpa. Let EFE'’s in Part B define a = { by, b, bs, - b;}, where
bi can be a singleton hypothesis or any subset of hypotheses
under the same parent and at the same level. Since they are



(Table 4) Efficiency Comparison

Part A Part B
FE's of d EFEs of ng and ny 61
S Ot and by, by, bs, -
Nk oI
n Regular DS I3 n
82 IFE's of ny and ny by, ba, bs, - g..

all exclusive, their set intersection with nx and n; results
in ¢. Core is defined as the union of all the focal elements
of a belief function. In formalizing the algorithm, we try to
follow the terminologies that were introduced in [5]. Let

Core of Bel; = {aj, ag, -

Core of Belz = { nk, m'}
where biNny=for 1 <i<zandp =k, L a's and by’s
are IFE’s and EFE’s of Bel,, respectively.

dx, bl, bZ, bz}

Here we are going to show an algorithm by which we can
compute m(by) without calculating the individual set inter-
section and cross productions among components in . In part
A of the table, the regular DS combination scheme is per-
formed. Let’s take a look at Part B.

mbe) =mbe) -m(82 [ K
where 1 <k <z, K =1~Yanp = mi(a) - mg(b), and m(by)
is the resultant probability mass, and

m(a)=m(bl)+m(b2)+
m;( z)=m;(b))+m(by)+

m(z)dxffz m(?l)— ml(Tz)
= kg;z{m(bk)_ml(bk)}
= kg‘:z{ml(bk)*m(62)/ml(bk)}

=m(02)/K—l)k:Z“m1(bk)

Thus,

m(ﬁz)

% - 1+ m( @) gl 23 =12 71 (bs)

=1+m(a)yy/m(a)

=m{ a)/m(a)

This is defined as an irrelevancy factor, IRF. Therefore, new
basic probability value for by for 1 < k < z is:

m{be) = m b)) - IAF
Note that IRF contains only basic probability numbers

of a.
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We showed that some computational gain can be achieved
by treating EFE’s as a focal element. We can easily collect
the IFE’s and EFE'’s from the given hierarchy. If a node for
a focal element of Belz is located in the hierarchy, its
supersets (to the root) and its subset (to the leaves) can easily
be picked up. The frame of discernment then consists of these
IFE’s and a for the rest.

5. Conclusion

This paper has discussed an efficient scheme of belief
combination. This includes an approximation method over the
inferencing structure and an efficient belief combination
algorithm to work on a hypothesis structure. We have
demonstrated a great amount of efficiency gain from
approximation method. This was possible because the
approximation method reduced the number of evidences
involved in evidence combination by selecting evidence with
minimum belief. A disadvantage of this scheme is that the
minimum belief evidence overrides other evidences with
higher belief and their effects are ignored. To avoid this, other
alternative is suggested to average belief values of evidences
or multiply them. These alternatives are being investigated
now.

Additional efficiency gain in our belief combination
algorithm is achieved when the size of frame of discernment
is large and two belief functions to be combined include less
common hypotheses. This algorithm has been useful in an
application, Playmaker [1], where the size of frame of
discernment is large, e.g., a hypothesis space (17 hypotheses
for a ‘facies’ attribute), and a set of evidence indicate at most
3 or 4 hypotheses.

Even though a number of experiments have been perfor-
med on various sets of sample cases, it is required to establish
formal analysis on the performance of the scheme in terms
of computational complexity other than experimental results.
This issue needs to be further studied in the future.
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