DOI QR코드

DOI QR Code

Fuzzy Closed BCMP Queueing Network Model for Performance Evaluation of Centralized Distributed Processing System

집중형 분산처리시스템의 성능평가를 위한 퍼지 폐쇄형 BCMP 큐잉네트워크모델

  • 추봉조 (김천대학 컴퓨터정보처리부) ;
  • 조정복 (동서대학교 인터넷공학부 컴퓨터 및 인터넷공학과) ;
  • 우종호 (부경대학교 전자컴퓨터 정보통신공학부)
  • Published : 2002.03.01

Abstract

This paper proposes the fuzzy closed RCMP queueing network model using fuzzy set theory for the performance evaluation of centralized distributed processing system with ambiguous system factors in the network environments. This model can derive the measures for system performances such as the job spending time, the system throughput, average job number and server utilizations using fuzzy mean value analysis which can process the fuzzy factors. Computer simulation has been performed centralized distributed system with fuzzy service requirement time for verifying the effectiveness of derived equations of performance evaluation according to the numbers of clients, and the results were analyzed. The proposed model provides more and flexible realistic than performance evaluation of conventional method when we evaluated system performance with ambiguous factors.

본 논문에서는 네트워크환경에 따라 모호성을 갖는 집중형 분산처리시스템의 성능평가를 위해 퍼지이론을 적용한 퍼지 폐쇄형 BCMP 큐잉네트워크모델을 제안하였다. 이 모델은 퍼지요소들을 처리할 수 있는 퍼지평균값분석방법을 사용하여 작업소요시간, 시스템처리율, 시스템내 작업수 및 서버 활용율 등의 시스템 성능을 평가할 수 있는 측도를 유도하였다. 이들의 유효함을 검증하기 위하여 퍼지서비스요구시간을 갖는 집중형 분산 처리시스템에 클라이언트의 수의 변화에 따른 유도된 성능평가측도를 시뮬레이션하고, 그 결과를 고찰하였다. 제안된 모델은 모호성을 갖는 시스템의 성능을 평가할 때 기존의 방법보다 유연하고 실제적인 방법을 제공한다.

Keywords

References

  1. A. O. Allen, 'Probability, Statistics, and Queueing Theory with Computer Science Applications,' Academic Press, California, 1990
  2. F. Baskett, K. M. Chandy, R. R. Muttz, and F. G. Palacios, 'Open, closed, and mixed networks of queues with different classes of customers,' J. ACM, Vol.22, pp.248-260, 1975 https://doi.org/10.1145/321879.321887
  3. J. B. Jo, Y. Tsujimura, M Gen and G. Yamazaki, 'Performance Evaluation of Computer System with Failure Based on Fuzzy Set Theory,' Journal of the Operations Research Society of Japan, Vol.38, No.4, pp.409-422, 1995 https://doi.org/10.15807/jorsj.38.409
  4. 추봉조, 조정복, 우종호, '네트워크시스템의 성능평가를 위한 퍼지 M/M/1/K 큐잉네트워크 모델', 대한전자공학회논문지, 제38권, CI편, 제4호, pp.169-177, 2001
  5. D. S. Negi and E. S. Lee, 'Analysis and simulation of fuzzy queues,' Fuzzy Sets and Systems, Vol.46, pp.321-330, 1992 https://doi.org/10.1016/0165-0114(92)90370-J
  6. M. Reiser, and S. S. Levenberg, 'Stationary state probabilities at arrival instants for closed queueing network with multiple types of customers,' Advanced Application Problems, Vol.17, pp.1048-1061, 1980 https://doi.org/10.2307/3213214
  7. I. F. Akyidiz, 'Mean value analysis approximation for multiple server queueing network,' Performance Evaluation, Vol.9, No.2, pp.77-91, 1988 https://doi.org/10.1016/0166-5316(88)90015-6
  8. J. Davidson, 'Parallel & Distributed Processing,' SIGCSE Bulletin Computer Science Education, 1998
  9. J. B. Stefani, 'Open distributed processing : an architectural basis for information networks,' Computer communication, Vol.18, No.11, pp.849-862, 1995 https://doi.org/10.1016/0140-3664(96)83804-7
  10. A. Barak and A. Shillon, 'A distributed load balancing policy for multi computer,' Software Pract, Expert, pp.901-913. 1985 https://doi.org/10.1002/spe.4380150905
  11. T. Holzer, 'Performance Measurement of Task allocation in a Distributed System,' Ph. D. Thesis, Victoria Univ. 1996
  12. J. R. Jackson, 'Networks of waiting lines,' Operations Research, Vol.5, No.4, pp.518-521, 1957 https://doi.org/10.1287/opre.5.4.518
  13. John D. C. Little, 'A proof of the queueing formula : L = ${\lambda}W$,' Operations Research, Vol.9, No.3, pp.383-387, 1961 https://doi.org/10.1287/opre.9.3.383
  14. A. Kaufmann and M. M. Gupta, 'Introduction to Fuzzy Arithmetic,' Van Nostrand Reinhold, 1985
  15. H. J. Zimmermann, Fuzzy Set Theory and Its Applicatins, 2nd ed., Kluwer Academic Publishers, 1991
  16. J. J. Buckley and Y. Qu, 'Solving Systems of Fuzzy Equations : A New Solution Concept,' Fuzzy Sets and Systems, Vol.39, pp.291-301, 1991 https://doi.org/10.1016/0165-0114(91)90099-C