Abstract
The genetic algorithm(GA), an optimization technique based on the theory of natural selection, has proven to be relatively robust means to search for global optimum. It is converged near to the global optimum point without auxiliary information such as differentiation of function. When studying some optimization problems with continuous variables, it was found that premature saturation was reached that is no further improvement in the object function could be found over a set of iterations. Also, the general GA oscillates in the region of the new global optimum point so that the speed of convergence is decreased. This paper is to propose the concept of restarting and elitist preserving strategy as a measure to overcome this difficulty. Some benchmark examples are studied involving 3-bar truss and cantilever beam with plane stress elements. The modifications to GA improve the speed of convergence.
유전자 알고리즘은 적자 생존과 자연친화의 유전이론을 기초로 하여 이루어진 탐색기법이다. 유전자 알고리즘은 미분 정보 등과 같은 부가적인 정보없이 수렴함으로 전역적 최적값을 탐색하는 강인한 탐색기법으로 알려져 있다. 유전자 알고리즘은 연속형의 설계변수를 가지는 문제에서 세대가 계속 진행되어도 목적함수의 개선이 없이 조기에 수렴하는 경우가 있다. 또한 전역적 최적값 근처에서 수렴하지 못하고 목적함수값이 진동하여 수렴속도가 떨어지는 단점이 있다. 본 연구에서는 위와 같은 유전자 알고리즘의 단점을 보완하고자 재시동 조건과 엘리트 보존방법을 제안하였다. 수정된 유전자 알고리즘의 유용성을 검증하기 위해 3부재 트러스와 평면응력 외팔보에 적용하여 수렴 속도의 향상을 확인하였다.