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RIEMANNIAN SUBMANIFOLDS IN
LORENTZIAN MANIFOLDS WITH
THE SAME CONSTANT CURVATURES

JOONSANG PARK

ABSTRACT. We study nondegenerate immersions of Riemannian
manifolds of constant sectional curvatures into Lorentzian mani-
folds of the same constant sectional curvatures with flat normal
bundles. We also give a method to produce such immersions using
the so-called Grassmannian system..

1. Introduction

The study of isometric immersions of the space forms N™(c) with
constant sectional curvature c into the space forms N™*+*(¢’) has been
a classical problem in differential geometry. For example, nonexistence
of an isometric immersion of the hyperbolic space form H? = N2(-1)
into R? = N3(0) by Hilbert [3], existence of local isometric immersions of
N27=1(c) in N?*(c+1) and nonexistence of local immersions of N2"~2(c)
in N2»~1(c + 1) by Cartan [2], and generalizations of Cartan’s work by
Tenenblat and Terng [6], [7], [8] are known, and many other results have
been obtained in [9] and (1], too.

On the other hand, recently the soliton theory in integrable systems
has been developed extensively so that it can be applied to geometric
problems. Notice that the sine-Gordon and the sinh-Gordon equations
are special kind of soliton equations, which are related to local immer-
sions of N2(c) into N3(c+1) for ¢ = —1 and 0. In this vein, the so-called
n-dimensional system or G/K system on a symmetric space developed
by Terng [9] has succeeded in explaining some geometry of submanifold
N™(c) in N™*%(¢/) in [9] and [1].
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In this paper, we study how a Riemannian space form N"(c) can be
locally immersed into the Lorentzian space form N™t%1(c), specifically,
study suitable geometric conditions on such immersions and a method
to produce them.

2. Submanifolds in Lorentzian space

First, we introduce basic knowledge and notations about Lorentzian
geometry. For details, see [4] and [5]. Denote by R™" the vector space
R™*" with the nondegenerate metric of index r, (z,y) = > v, z;y; —
Z?:;:H z;y;. A basis {e1, - ,emir} of R™" is called orthonormal if
(€i,e;) = €65, where ¢ = 1 fori < mand ¢ = —1for ¢ > m. A
pseudo-Riemannian manifold N which has a metric of index 1 is called
a Lorentzian manifold. It is well-known (cf. [4]) that the complete
connected (m + 1)-dimensional Lorentzian manifold N™}(c) of the con-
stant sectional curvature ¢ = 0,1, —1 is the Lorentzian space R™!, the
Lorentzian sphere S™! or the Lorentzian hyperbolic space H™!, respec-
tively, where

S™! = {z e R™M! | (z,2) = 1},
H™! = {z ¢ R™? | (z,2) = —1}.

The usual differential d on R™!, R™*1! or R™? induces the Levi-
Civita connection V on N™1(c) by taking the orthogonal projection VV/
of dV to the tangent space TN™1(c) for a vector field V on N™1(c).

Suppose X : M™ — N"tkl(c) is an isometric immersion of a Rie-
mannian manifold M. Let {ej, - ,e,rrx+1} be a local orthonormal
frame field such that ey,--- ,e, are tangent to M. From now on, we
shall use the following index convention:

1<AB,C<n+k+1, 1<4jik<n, n+l1<afB,vy<n+k+1.

Let {wa} be the coframe field dual to {e4}, that is, wa(ep) = €4dap,
where, €4 = (ea,€e4) so that e4 =1 for A <n+k and €,45+1 = —1.
The first fundamental form on M is then given by I = >, w; ® w;,
which is a positive-definite metric. Let wap be the connection 1-form
corresponding to the canonical connection V,

?eA = ZCB RWwpA.
B
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This induces the structure equations, Gauss, Codazzi and Ricci equa-
tions on M:

(2.1) dw; = — Zwij A Wi,
J
(2.2) wWij +Zwik Awy; = —Zwm/\wa]- + c w; A wy,
k «
(23) dwia = — Zwik A Whka — wa A wﬁa,
k B

(2.4) dwap + Zwm ANwyg = — Zw‘” A wig.

¥ i

From (2.2) and (2.4), we obtain the curvature 2-form € on M and
the normal curvature 2-form 2% as

(25) Qij = Z €EaWia N Wi + € Wi AWy,

a4

(26) Zﬁ = Z €EaWia N Wig.

The shape operator A4, in the normal direction v € vM and the
second fundamental form IT are defined by

(2.7) A= Z €aWio ® We Q €5,
7,
(2.8) I = ija Qw; ® eq.
J.o

It is an elementary fact that M has constant sectional curvature c if
and only if Q;; = ¢ w; Aw;. Thus by (2.5),

(2.9) z €aWin NWje =0 for i#j.

(a3
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We may assume that when ¢ = 0,1 or —1, M is the Euclidean space
R™, the unit sphere S™ or the hyperbolic space H", respectively, as far
as local immersions are concerned.

Now, suppose also that the normal bundle vM of M is flat, i.e.,
¥ = 0. Then there exists a parallel normal frame {e,} and it is easy
to see that all the shape operators {4, | v € ¥, M} commute by (2.6),
and thus they are simultaneously diagonalizable.

DEFINITION 2.1. Suppose k+1 > n. A Riemannian submanifold M"
in N*tk:1(c) is called nondegenerate if Im1II), = {II(X,Y) | X,Y €
T,M} has dimension n for any p € M™ and the inner product on Im /I
induced by (, ) is nondegenerate.

A nondegenerate Riemannian submanifold M™ with a flat normal
bundle has a strong geometric property, the existence of a curvature
coordinate system. To see this, let T,M = E;&---® E, be the common
eigen-decomposition for {A, | v € v, M}. Then

(2.10) Alg, =\ ® Idg,

for some Ar,---,Ar € (yp,M)*. The curvature normals vy, -,V in
vp,M are defined as the dual to A;, that is, A;(v) = (v,v;). The following
lemma holds as does in the case of Riemannian immersions into space
forms ([9], [1]):

LEMMA 2.2. Suppose M™ is nondegenerate and has a flat normal
bundle. Then r = n and the curvature normals vy,--- ,v, are linearly
independent.

Proof. Since (II(X,Y),v) = (A,(X),Y) for v € y,M and X,Y €
T,M, we have (ImII)* = Ker(A : vM — T*M ® TM). From A,|g, =
(v,v;)Idg, for any i, v € KerA if and only if v € Span{v;}*. Hence
Span{v;} = (KerA)* = ImII. Since M™ is nondegenerate, r = n and
{v1,--+ ,vn} should be a basis of Im II. O

According to the above lemma, we can also see that dim E; = 1 for
each i and thus there exist a unique orthonormal tangent frame {e;}
which diagonalize the shape operators simultaneously, up to signs and
permutations, and they are smooth.
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Using the frame {e;} and {e,}, the curvature normals can be ex-
pressed as

(211) Uy = Z€a<viaea>ea = Zea)\iaeav

where A, = Ai(e,) and
(212) Wia = )\mwi.

Thus (v;,vj) = >, €aXiadja = 0 for i # j by (2.9). Hence vy, ---,
vy, are mutually orthogonal and not null vectors.

If all vy, -+ , v, are space-like, we say that the curvature normals are
space-like. If not, then only one of them is time-like. We may assume
vy, is a time-like vector in this case and say that the curvature normals
are Lorentzian.

PROPOSITION 2.3. Suppose M™ is a nondegenerate Riemannian sub-
manifold of N"**:1(c) with constant sectional curvature ¢ and a parallel
normal frame e, and k + 1 > n. Then there exist a coordinate system
(€1,--+ ,%,) and a map b = (by,--- ,b,)* such that ¢; = -2 are a

bi (9:121
principal tangent frame.

Proof. From the Codazzi equations (2.3), using (2.12) and wep = 0,
we obtain

(213) d/\ia(ej) + (/\ia - )‘ja)’Yiji =0 fori 75 j,
and
(2.14) (Aia — Aka)Yikj = (Mia — Aja)vije for distinct 4, 7, &,

where wij = 3, YijkW-

Take b; = l(vi,v,-)|_%. Multiplying €,Aio to (2.13) and €qAkq tO
(2.14), and summing up over «, we obtain

db;(e; .
Yiji = —Ifé—J) for i#j and (v, vk)vie; =0 for distinct 4,5, k.
Therefore,
db;(e; db;(e;
(2.15) wy = Pile) bl

bi ! bj J
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By (2.15), we see that V¢e; = dbilffj Je;. It is a direct calculation
that

We now conclude the local geometry of the above submanifold as
follows. Here, we denote by I,, the n x n identity matrix and J, =
diag(1,---,1,—1) is a p x p diagonal matrix.

THEOREM 2.4. Let X : M™ — N"*%:1(¢) be a nondegenerate iso-
metric immersion of a Riemannian manifold M™ of constant sectional
curvature ¢ with a flat normal bundle, and assume k + 1 > n. Then,
for a local parallel normal frame e, there exist a curvature coordinate
system (z1,+++ ,Z,), amap b= (b1, -+ ,b,)" and an n x (k+ 1) matrix-
valued By = (b;;) such that ByJy+1B% = I, or B1Jx41 B} = J,, and the
first and second fundamental forms are given by

n n k-+1
I=>"bdai, =Y bybda] ®eny;.
i=1 i=1 j=1
The curvature normals are space-like when By Jy 1Bt = I,, and

Lorentzian when By Jy 1Bt = J,.

Proof. Let e; = li Then e; are an orthonormal tangent frame
b; Oz, g

with its dual coframe w; = b;dx;.
Define b;j = Ai p4;bi- Then by (2.12),

Wintj = )\i,n-}-jwi = bijdfﬂi-

Hence, the second fundamental form is given as above. Orthonormal-
ity of the columns of B; follows from the fact that the curvature normals
v; = ), Aia€q are orthogonal and b; = |{v;, v;)| ™ 2. 0

3. Grassmannian system

To obtain Riemannian submanifolds in N?**:1(c) described in Section
2, we will use a special partial differential equation called Grassmannian
system. G/K systems are introduced by Terng in [9], and we mention
some results from [9], which will be used in our case.

Let G/K be a rank n symmetric space with the involution ¢ : G — G
on the Lie algebra G of G, G = K + P the Cartan decomposition, and
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A C P a maximal abelian subalgebra with a basis {a1,...,a,}. Let At
denote the orthogonal complement of A in G with respect to the Killing
form. G/K system for v: R* — PN AL is

(3.1) [ai’vzg'] - [a’j’vm] = [[aiﬂv]’ [aj’v]], 1<i#j<n,

where v,, = g—é’;. This is a Cauchy problem which can be solved for any
generic data decaying rapidly along (z;,0,...,0) € R™.
It is known that v is a solution of (3.1) if and only if the G ® C-valued

connection 1-form on the trivial principal bundle R"™ x G on R"”

n

(32) 9)\ = Z(az/\ + [ai, U])dl‘z

i=1

is flat for any A € C.

Let g : R® — G and 0 be a G-valued connection 1-form. We call
g*0=g0g~' —dgg! the gauge transformation of 8 by g. It is obvious
that if 8 is flat, then g * 8 is also flat.

To apply the theory of G/K system to our case, we take the Lorentzian
Grassmannian system G/K = O(n+m,7)/(0(n) x O(m,r)) related to
the isometry group G of N"**1(c).

Let M, be the set of p X ¢ matrices. For ¢ = 0,1, —1, the isometry
groups G are given by

Tsom(R™1) = {(2 31) { AcOMm+k1), ¢ e R”*"“*l} ,

O(n+k+1,1)={AeGLn+k+2,R) ‘ AtnA=a},

O(n+k2) ={AeGLin+k+2,R) | AV 1A= T},

respectively. Here J; = diag (1, ---, 1, —1) and J_; = diag (-1, 1,
-+, 1, —=1), and to fit into our purposes, we slightly modify the inner
product on R**+%2 by

n+k+1

(z,y) = —T1y1 + Z ZiYi — Tntk+2Yntk+2,
=2

and we identify R**%! with {1} x R**%:! ¢ R**+%:2 by X « (1, X).
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The Lie algebras of the isometry groups G of N*"t¥(c) for c = 0,1, —1
can be expressed in one way as the Lie algebra

9= {(2 ——(;étJ) J Ye 0(n+k,1), é‘f c R”’HC-H},

where J = diag(1,---,1,-1) € M(n+k+1)><(n+k+1)-
From now on, we abuse notation J = diag(1,--- ,1,~1) whatever the
size is, and assume k + 1 > n.

Define an involution o on G by

-1 0 0 -1 0 0
oX)=(0 —-I, o}x| o0 -I, 0], Xeg,
0 0 Ik 0 0 Ik

where I, is the p x p identity matrix. Then the Cartan decomposition
G = K + P is given by

0 —ctt 0
K= & A 0 A € o(n), B € o(k,1), ﬂ eR™ 3,
0 0 B
0 0 —ctiJ
P = 0 0 -—-CiJ ‘ Ce M(k-l—l)xm fé e RF+1
& C 0

Let A; be an abelian subalgebra of P spanned by

a; —

0
D;
0
0

e BN e B an B can)

0
0
-D;
0

[ew B e B en B wn

where the matrices are partitioned into blocks with sizes (1, n,n, k+1—n)
and D; = diag(0,--- ,1,---,0), of which the only nonzero entry 1 occurs
at the i-th entry. Then the solution v; of the G/K system is of the form

0 0 —cb 0

0 0 —-Ft —GtJ
(3.3) 'l F 0 0o |’

0 G 0 0
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where b* € R, F € Muxn with f” =0and G € M(k—{—l—n)xn-
Put § = diag(dzy,--- ,dz,), then the flat connection 1-form 61 in
(3.2) becomes

0 —chbtd 0 0
. s sF—Fs  a 0

(3.4) h=1|0 _xs 6Ft—F5 5GtJ
0 0 —G§ 0

We also take another abelian subalgebra Aj; of P spanned by
0
/ O
0
0

Then the solution and the flat connection 1-form become

0 0 0 —cbtJ
0 0 -Gt —-F'J
(35) v = 0 G 0 0
b F O 0
and
0 —cbté 0 0
_ It
(3.6) o = %b OF OF 0 8 _)g(s , respectively.
0 -AJ§  J6Gt JSF'J —F§

In this case, matrices are partitioned with sizes (1,n,k + 1 — n,n).

4. Main Theorems

We now investigate on how to associate nondegenerate Riemannian
submanifolds in N™*+%:!(c) which has constant curvature ¢ and a flat
normal bundle to the solutions of the Lorentzian Grassmannian system.

THEOREM 4.1. Suppose X is a nondegenerate local isometric immer-
sion of a Riemannian manifold M™ into N"**(c) of constant sectional
curvature ¢ with a flat normal bundle as in Theorem 2.4, where k+1 > n.
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If M has space-like curvature normals, then there exists vy of the
form (3.3), a solution of the system associated to G such that

bz,
F:(%L) (wi;) = 6F — F'5, and BydJB! = §F' — Fé.

If M has Lorentzian curvature normals, then there exists a solution
vy of the form (3.5) such that

F= ( (bz)‘zj

2

) . (wi;)=0F — F', and BydJB.J = J§F'J — F.

Proof. Suppose M has space-like curvature normals. Choose a par-
allel normal frame e, and a tangent frame e; as in Theorem 2.4. Then
w; = bidz;. Put b= (b1, -+ ,b,)" and w = (w;;). The structure equa-
tions, Gauss, Codazzi and Ricci equations for X are equivalent to saying
that

5 0 —cbd 0
0, =1 &b w 6B,
0 —JBI§ 0

is flat. Also, it is easy to see that

3 0 —cbté 0
0 —\JBi§ 0
is flat for any A € C. Let F = (fij) € Muxn, where f;; = (b;)jmj for
i # j and f; = 0. Since the connection 1-form w on M satisfies

wij = Td:ci — Tdmj for ¢#j
] )

by (2.15), we obtain
W = (wij) =0F — Ftd.
On the other hand, from the flatness of 6,

dJBE NG = —JB!§ Aw = —JBLS A (6F — F'6) = JBL(6F' — FS) A6



Riemannian manifolds in Lorentzian manifolds with curvature ¢ 247

and thus

(4.2) dJB: = JBY(OF' — F6) + Cé

for some C' € M(g11)xn- Extend By to B = (gl> € O(k,1). Multi-
2

plying B; and B; on (4.2), we obtain

(4.3) . BidJBi = (6F' — F6) + B,C$
and
(4.4) By dJB: = B,Co.

Since B; dJB! and 6F! — F§ are skew-symmetric, we have
(4.5) B, dJB! = 6F' — F§.

By the same arguments as in [1], using Bo dJB! = ByC$, it is easy to
prove that By dJBEJ is flat. Thus
(4.6)

BBl — (B1 dJB! B, dJB§J> 3 (5Ff —F$ —5ctB§J>

for some h € O(k —n,1). )
Set G = hB>C. Now, take a gauge transformation on 6, by

0
Iy
0

o000
OO
o o

then the resulting flat connection 1-form is g * 6y = 61 defined as (3.4).
Therefore, we can find a desired solution v; of the system associated to

g.
The proof for the immersion which has Lorentzian curvature normals

are similar only except taking B = <B2) € O(k,1) as an extension of
1

B
B to obtain g x 8, = 6. O

Conversely, from a solution of the system associated to G, we can
produce the above kind of an immersion.
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THEOREM 4.2. Suppose k+ 1 > n. If vy is a solution of the system
associated to G defined as (3.3), then there exists a nondegenerate iso-
metric immersion X of a Riemannian manifold M™ of constant sectional
curvature ¢ with a flat normal bundle into N™"**(c), which has space-like
curvature normals, a parallel normal frame {e,}, a coordinate system
(z1,--+ ,,), and an Moy y1)-valued map By with BiJB! = I such
that the first and second fundamental forms are given by

n n k+1 .
I=>"bda?, = bbida? ®eny;.
=1

i=1 j=1

If vy is a solution defined as (3.5), then there exists a nondegenerate
immersion X : M™ — N™t*(c) of a Riemannian manifold M of sectional
curvature ¢ with a flat normal bundle, which has Lorentzian curvature
normals, and a map By € M,y (k41) with ByJB} = J such that the
first and second fundamental forms are given as the same as above.

Proof. We will prove only the first case.
Consider the flat connection 6% as (3.4). Since (

SF*—Fé§ 6G'J
-G 0

SFt - F§ 8G'J
-G6 0

is flat, BdB~! = ( ) for some B € O(k,1). Put

(Bl >’ here ‘El < Mnx(k-i—l)- Iaking a gauge transformation on
2

1 0 0
g=1(0 I, 0
0 0 B!

gives g * 81 = B, where 0, is of the form (4.1). )
Now, let E be a G-valued map such that E~'dE = 6;. Denote by
X, e;, e, the columns of E. Then from

d(X,ei eq) = (X, e4,€q) 01,
we obtain

dX = Z bldiﬂz ® €, d€n+j = Z 6n+]’bijd$i & e;.

1

Hence e, are a parallel normal frame, and I and IT are given as above.
Flatness of the connection 6; gives exactly the structure equations, the
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Gauss and the Codazzi equations of the immersion X of a Riemannian
manifold M™ of sectional curvature c¢. The fact that curvature normals
are space-like comes from the orthonormality of the rows of B;. There-

fore, X gives a desired immersion. g
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