DOI QR코드

DOI QR Code

THE RANGE OF DERIVATIONS ON BANACH ALGEBRAS

  • Jun, Kil-Woung (Department of Mathematics, Chungnam National University) ;
  • Kim, Hark-Mahn (Department of Mathematics, Chungnam National University)
  • Published : 2002.05.01

Abstract

In this paper we show that if D is a continuous linear Jordan derivation on a Banach algebra A satisfying [[D($x^{n}$), $x^{n}$, $x^{n}$] $\in$ rad(A) for a positive integer n and for all x${\in}$A, then D maps A into rad(A).

Keywords

References

  1. M. Bresar, Jordan derivations on semi-prime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1
  2. M. Bresar and J. Vukman, Derivations of noncommutative Banach algebra, Arch. Math. 59 (1992), 363-370. https://doi.org/10.1007/BF01197053
  3. L. O. Chung and J. Luh, Semiprime rings with nilpotent derivations, Canad. Math. Bull. 24 (1981), no. 4, 415-421. https://doi.org/10.4153/CMB-1981-064-9
  4. Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra 23 (1995), no. 10, 3705-3713. https://doi.org/10.1080/00927879508825427
  5. I. N. Herstein, Rings with Involution, Univ. of Chicago Press, Chicago, 1976.
  6. B. E. Johnson, Continuity of derivations on commutative Banach algebras, Amer. J. Math. 91 (1969), 1-10. https://doi.org/10.2307/2373262
  7. K. W. Jun and B. D. Kim, The range of derivations mapping on noncommutative Banach algebras, Bull. Korean Math. Soc. 28 (1991),65-68.
  8. H. M. Kim, Derivations on prime rings and Banach algebras II, preprint.
  9. G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co., Singapore, New Jersey, London, Hong Kong, 1994.
  10. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
  11. A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214. https://doi.org/10.1090/S0002-9939-1970-0250069-3
  12. J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52. https://doi.org/10.1090/S0002-9939-1990-1007517-3