Abstract
We Consider the fuzzification of sub-implicative ideals in BCI-algebras, and investigate some related properties. We give conditions for a fuzzy ideal to be a fuzzy sub-implicative ideal. we show that (1) every fuzzy sub-implicative ideal is a fuzzy ideal, but the converse is not true, (2) every fuzzy sub-implicative ideal is a fuzzy positive implicative ideal, but the converse is not true, and (3) every fuzzy p-ideal is a fuzzy sub-implicative ideal, but the converse is not true. Using a family of sub-implicative ideals of a BCI-algebra, we establish a fuzzy sub-implicative ideal, and using a level set of a fuzzy set in a BCI-algebra, we give a characterization of a fuzzy sub-implicative ideal.