Polyethylene flow prediction with a differential multi-mode Pom-Pom model

  • Rutgers, R.P.G. (Department of Chemical Engineering, University of Queensland) ;
  • Clemeur, N. (Department of Chemical and Metallurgical Engineering, RMIT University) ;
  • Debbaut, B. (Polyflow s.a., Louvain-la-Neuve)
  • Published : 2002.03.01

Abstract

We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University, on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and carson (1998). We explore the predictive power of a differential multi-mode version of the porn-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (19c99), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Keywords

References

  1. J. Non-Newton. Fluid Mech. v.82 Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the 'pom-pom' model. Bishko, G.B.;O.G. Harlen;T.C.B. McLeish;T.M. Nicholson https://doi.org/10.1016/S0377-0257(98)00165-7
  2. J. Rheol. v.44 Molecular drag-strain coupling in branched polymer melts Blackwell, R.J.;T.C.B. McLeish;O.G. Harlen https://doi.org/10.1122/1.551081
  3. The Theory of Polymer Dynamics Doi, M.;S.F. Edwards
  4. J. Non-Newton. Fluid Mech. v.75 On the stability of the simple shear flow of a Johnson-Segalman fluid Georgiou, G.C.;D. Vlassopoulos https://doi.org/10.1016/S0377-0257(97)00078-5
  5. J. Rheol. v.43 Predicting low density polyethylene melt rheology in elongational and shear flows with "pom-pom" constitutive equations Inkson, N.J.;T.C.B. McLeish;O.G. Harlen;D.J. Groves https://doi.org/10.1122/1.551036
  6. J. Rheol. v.45 Experimental observation and numerical simulation of transient "stress fangs" within flowing molten polyethylene Lee, K.;M.R. Mackley;T.C.B. McLeish;T. M. Nicholson;O.G. Harlen https://doi.org/10.1122/1.1389316
  7. Rheol. Acta v.38 Rheological characterisation of a high-density polyethylene with a multi-mode differential viscoelastic model and numerical simulation of transient elongational recovery experiments Langouche, F.;B. Debbaut https://doi.org/10.1007/s003970050155
  8. J. Rheol. v.42 Molecular constitutive equations for a class of branched polymers: The pom-pom polymer McLeish, T.C.B.;R.G. Larson https://doi.org/10.1122/1.550933
  9. Rheol. Acta v.33 A New Elongational Rheometer for Polymer Melts and Other Highly Viscoelastic Liquids. Meissner, J.;J. Hostettler https://doi.org/10.1007/BF00453459
  10. J. Non-Newt. Fluid Mech. v.97 Numerical simulation of entry flow of the IUPAC-LDPE melt Mitsoulis, E. https://doi.org/10.1016/S0377-0257(00)00183-X
  11. J. Non-Newt. Fluid Mech. v.95 An adaptation of the separable KBKZ equation for comparable response in planar and axisymmetric flow Olley, P. https://doi.org/10.1016/S0377-0257(00)00161-0
  12. Rheol. Acta v.40 Thermodynamic admissibility of the pom-pom model for branched polymers Ottinger, H.C. https://doi.org/10.1007/s003970000159
  13. J. Non-Newton. Fluid Mech. v.2 A new constitutive equation derived from network theory Phan-Thien, N.;R.I. Tanner https://doi.org/10.1016/0377-0257(77)80021-9
  14. J. Non-Newton. Fluid Mech. v.92 LDPE melt rheology and the pom-pom model Rubio, P.;M.H. Wagner https://doi.org/10.1016/S0377-0257(00)00094-X
  15. Rheol. Acta v.39 The uniaxial elongational rheometer RME - six years of experience Schweizer, T. https://doi.org/10.1007/s003970000103
  16. Engineering Rheology Tanner, R.I.
  17. J. Rheol. v.45 Differential constitutive equations for polymer melts: The extended Pom-Pom model Verbeeten, W.M.H.;G.W.M. Peters;F.P.T. Baayens https://doi.org/10.1122/1.1380426
  18. J. Non-Newtonian Fluid Mech. v.76 Dynamics of polymer melts in reversing shear flows Wagner, M.H.;P. Ehrecke https://doi.org/10.1016/S0377-0257(97)00117-1
  19. J. Non-Newton. Fluid Mech. v.97 Numerical simulation of branched polymer melts in transient complex flow using pom-pom models. Wapperom, P.;R. Keunings https://doi.org/10.1016/S0377-0257(00)00223-8