Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter

배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과

  • Published : 2002.03.01

Abstract

The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

수직방향 가속도를 받는 원통형 액체 저장탱크는 내부유체의 슬로싱(sloshing)에 의한 동하중에 의하여 구조 및 제어성능 안정성에 심각한 영향을 받을 수 있다. 더욱이 유체의 슬로싱 진동수가 제어계 혹은 탱크구조물의 고유진동수 근처에 있게되면 발사체에 큰 동하중과 모멘트를 유발하게 된다. 이와 같은 유체의 동적 효과를 억제하기 위하여 일반적으로 링형 탄성체 배플(baffle)을 채용하고 있다. 본 논문에서는 배플의 개수와 내경을 변수로 설정하여 배플의 동적억제효과를 평가 및 분석하기 위한 수치해석을 수행한다. 배플내경에 따른 파라메트릭 해석과, 탱크높이 및 유체높이를 각각 균등 분할하여 설치된 배들에 대한 동억제 효과를 분석한다. 유체와 구조물 사이의 정확하고 효과적인 연계해석을 위하여 ALE(arbitrary Lagrangin-Eulerian) 수치해석 기법을 적용한다.

Keywords

References

  1. H. N. Abramson, L. R. Gsrza, 'Some measurements of the effects of ring baffles in cylindrical tanks', J. Spacecraft Rockets, Vol. 1, No. 5, 1964, pp.560-564 https://doi.org/10.2514/3.27699
  2. D. G. Stephens, 'Flexible baffles for slosh damping', Spacecraft Rockets, Vol. 3, No. 5, 1966, pp.765-766 https://doi.org/10.2514/3.28533
  3. 'Slosh Suppression', SP-8031, NASA, 1969
  4. J. R. Cho, J. M. Song and J. K. Lee, 'Finite Element Techniques for the Free-Vibration and Seismic Analysis of Liquid-Storage Tanks', Finite Elements in Anlysis and Design., Vol. 37, No. 6-7, 2001, pp.467-483 https://doi.org/10.1016/S0168-874X(00)00048-2
  5. K. Yamamoto, M. Kawahara, 'Structural Oscillation Control using Tuned Liquid Damper', Computers and Structures, Vol. 71, 1999, pp.435-446 https://doi.org/10.1016/S0045-7949(98)00240-5
  6. C. W. Hirt, A. A. Amsden, J. L. Cook, 'An arbitrary Lagrangian-Eulerian computing method for all flow speeds', J. Comput. Phys, Vol. 14, 1974, pp.227-253 https://doi.org/10.1016/0021-9991(74)90051-5
  7. T. Belytschko, J. M. Kennedy, 'Computer models for subassembly simulation', Nucl. Engrg. Des, Vol. 49, 1978, pp.17-38 https://doi.org/10.1016/0029-5493(78)90049-3
  8. T. J. R. Hughes, W. K. Liu, T. K. Zimmerman, 'Lagrangian-Eulerian finite element formulation for incompressible viscous flows', Comput. Methods. Appl. Mech. Engrg, Vol. 29, 1981, pp.329-349 https://doi.org/10.1016/0045-7825(81)90049-9
  9. 'Dytran User's Manual', MSC. Software Ver. 4.7
  10. M. Souli, A. Ouahsine and L. Lewin, 'ALE formulation for fluid-structure interaction problems', Comput. Methods. Appl. Mech. Engrg, Vol. 190, 2000, pp.659-675 https://doi.org/10.1016/S0045-7825(99)00432-6
  11. S. Y. Lee and J. R. Cho, 'Baffled fuel-storage container: Parametric study on transient dynamic characteristics', Structural Engineering and Mechanics(in review)