DOI QR코드

DOI QR Code

Planar Hall Effect of GaMnAs Grown via low Temperature Molecular Beam Epitaxy

저온 분자선에피탁시 방법으로 성장시킨 GaMnAs의 planar Hall 효과

  • Kim, Gyeong-Hyeon (Dept. of Materials Engineering, Chungnam National University) ;
  • Park, Jong-Hun (Dept. of Materials Engineering, Chungnam National University) ;
  • Kim, Byeong-Du (Dept. of Materials Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Dept. of Materials Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Dept. of Materials Engineering, Chungnam National University) ;
  • Im, Yeong-Eon (Dept. of Materials Engineering, Chungnam National University) ;
  • Kim, Chang-Su (Materials Evaluation Center, Korea Research Institute of Standards and Science)
  • 김경현 (충남대학교 재료공학과) ;
  • 박종훈 (충남대학교 재료공학과) ;
  • 김병두 (충남대학교 재료공학과) ;
  • 김도진 (충남대학교 재료공학과) ;
  • 김효진 (충남대학교 재료공학과) ;
  • 임영언 (충남대학교 재료공학과) ;
  • 김창수 (한국표준연구원, 재료 물성 평가 센타)
  • Published : 2002.03.01

Abstract

Planar Hall effect of ferromagnetic GaMnAs thin films was investigated for the first time. The films were grown in an optimized growth condition via molecular beam epitaxy at low temperatures. For the optimization of the growth conditions, we used reflection high-energy electron diffraction, electrical conductivity, double crystal x-ray diffraction, and superconducting quantum interference device measurements techniques. We observed that the difference between the longitudinal resistance and the transverse resistance matches the planar Hall resistance. The ratio of the planar Hall resistance at saturation magnetic field to that at zero reached above 500%.

Keywords

References

  1. M. Oestreich, Nature 402, 735 (1999) https://doi.org/10.1038/45406
  2. A. Shen, Y. Horikoshi, H. Ohno, and S.P. Guo, Appl. Phys. Lett. 71, 1540 (1997) https://doi.org/10.1063/1.119973
  3. K.H. Kim, J.H. Park, B.D. Kim, C.S. Kim, D.J. Kim, H.J. Kim, and Y.E. Ihm, Met. Mater., accepted, 2001
  4. X. Liu, Y. Sasaki, and J.K. Furdyna, Appl. Phys. Lett. 79, 2414 (2001) https://doi.org/10.1063/1.1409587
  5. M.E. Overberg, C.R. Abernathy, and S.J. Pearton, Appl. Phys. Lett. 79, 1312 (2001) https://doi.org/10.1063/1.1397763
  6. A. Schuhl, F. Nguyen van Dau, and J.R. Childress, Appl. Phys. Lett. 66, 2751 (1995) https://doi.org/10.1063/1.113697
  7. A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A.S. Van Steenbergen, P.J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B56, 13103 (1997) https://doi.org/10.1103/PhysRevB.56.13103
  8. H. Ohno, Science 281, 951 (1998) https://doi.org/10.1126/science.281.5379.951
  9. A. Shen, F. Matsukura, S.P. Guo, Y. Sugawara, H. Ohno, M. Tani, H. Abe, and H.C. Liu, J. Crystal Growth 201/202, 679 (1999) https://doi.org/10.1016/S0022-0248(98)01447-X
  10. B. Zhao, X. Yan, and A.B. Pakhomov, J. Appl. Phys. 81, 5527 (1997) https://doi.org/10.1063/1.364592
  11. C.R. Chang, IEEE Trans. Magn. 36, 1214 (2000) https://doi.org/10.1109/20.877658
  12. F. Nguyen Van Dau, A. Schuhl, J.R. Childress, and M. Sussiau, Sensors and Actuatera A53, 256 (1996) https://doi.org/10.1016/0924-4247(96)01152-1
  13. M.L. Reed, S.X. Liu, J.C. Roberts, H.H. Stadelmaier, S.M. Bedair, and N.A. El-Masry, J. Mag. Mag. Mater. 218, 177 (2000) https://doi.org/10.1016/S0304-8853(00)00403-0