DOI QR코드

DOI QR Code

디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계

A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns

  • 김동연 ((주)아이티엑스퍼트그룹) ;
  • 김진일 (동의대학교 컴퓨터공학과)
  • 발행 : 2002.06.01

초록

본 논문에서는 위성영상을 처리하기 위한 무감독분류 기법인 군집분류 시스템을 설계하고 구현하였다. 구현된 시스템은 새로운 위성영상 포맷과 군집분류 기법의 지원이 용이하고, 확장성 있는 시스템의 설계를 위하여 팩토리 패턴과 전략적 패턴 등 다양한 디자인 패턴을 적용하였다. 군집분류 시스템은 순차군집분류 기법, K-Means 군집분류 기법, ISODATA 기법, Fuzzy C-Means군집분류 기법을 설계, 구현하였으며 Landsat TM 위성영상을 분류기의 입력영상으로 실험하였다. 그 결과 군집분류 기법은 사전지식이 없는 위성영상의 분류를 위한 표본영역의 추출작업과 위성영상의 실시간 분류에 효과적인 사용이 가능함을 보였으며, 재사용성 및 확장성이 우수한 시스템을 개발하였다.

In this paper, we have designed and implemented cluttering classification systems- unsupervised classifiers-for the processing of satellite remote sensing images. Implemented systems adopt various design patterns which include a factory pattern and a strategy pattern to support various satellite images'formats and to design compatible systems. The clustering systems consist of sequential clustering, K-Means clustering, ISODATA clustering and Fuzzy C-Means clustering classifiers. The systems are tested by using a Landsat TM satellite image for the classification input. As results, these clustering systems are well designed to extract sample data for the classification of satellite images of which there is no previous knowledge. The systems can be provided with real-time base clustering tools, compatibilities and components' reusabilities as well.

키워드

참고문헌

  1. J. Adinarayana and N. Rama Krishna, Integration of multiseasonal remotely-sensed images for improved landuse classification of a hilly watershed using geographical information systems, Int. J. Remote Sensing, Vol.17, No.9, pp.1679-1688, 1999 https://doi.org/10.1080/01431169608948731
  2. Edward M. Mikhail, James S. Bethel, J. Chris McGlone, Introduction to Modern Photogrammmetry, John Wiley & son, Inc. pp.216-300, 2001
  3. Richard A. Johnson, Dean W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, pp.573-627, 1992
  4. John A. Richards, Remote Sensing Digital Image Analysis : An Introduction, Second Revised and Enlarged Edition, Springer-Verlag, pp.229-262, 1994
  5. Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, John Wiley & Sons Ltd., pp.517-598, 2001
  6. D. Pollard, 'Strong consistency of k-means clustering,' The Annals of Statistics, Vol.9, No.1, pp.135-140, 1981 https://doi.org/10.1214/aos/1176345339
  7. F.R.D. Velasco, 'Thresholding using the isodata clustering algorithm,' IEEE Trans. Syst., Man, Cybern., Vol.SMC-10, pp.771-774, 1981
  8. Frank Hoppner, Frank Klawonn, Rudolf Kruse, Thomas Runkler, FUZZY CLUSTER ANALYSIS Methos for Classification, Data Analysis and Image Recognition, John Wiley & Sons Ltd., pp.1-59, 1999
  9. James C. Bezdek, James Keller, Raghu Krisnapuram, Nikhil R. Pal, FUZZY MODELS AND ALGORITHMS FOR PATTERN RECOGNITION AND IMAGE PROCESSING, Kaluwer Academic Publishers, pp.137-180, 1999
  10. James C. Bezdek, Richard J. Hathaway, Michael J. SABIN, William T. Tucker, 'Convergence Theory for Fuzzy c-Means : Counterexample and Repairs,' IEEE Trans. Syst., Man, Cybern., Vol.SMC-17, No.5, pp.873-877, 1987
  11. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns Elements of Reusable Object-Oriented Software, Addison Wesley Longman, Inc., pp.81-95, pp.315-323, 1995