DOI QR코드

DOI QR Code

RF reactive magnetron sputtering으로 제조한 TiO2 박막의 구조 및 광학적 특성

Structural and Optical Properties of TiO2 Thin Films Prepared by RF Reactive Magnetron Sputtering

  • 강계원 (금오공과대학교 신소재시스템공학부) ;
  • 이영훈 (금오공과대학교 신소재시스템공학부) ;
  • 곽재천 (금오공과대학교 신소재시스템공학부) ;
  • 이동구 (금오공과대학교 신소재시스템공학부) ;
  • 정봉교 ;
  • 박성호 ;
  • 최병호 (금오공과대학교 신소재시스템공학부)
  • Gang, Gye-Won (Dept.of Materials System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Yeong-Hun (Dept.of Materials System Engineering, Kumoh National Institute of Technology) ;
  • Gwak, Jae-Cheon (Dept.of Materials System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Dong-Gu (Dept.of Materials System Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Bong-Gyo (L.G. Philips Displays) ;
  • Park, Seong-Ho (L.G. Philips Displays) ;
  • Choe, Byeong-Ho (Dept.of Materials System Engineering, Kumoh National Institute of Technology)
  • 발행 : 2002.06.01

초록

Titanium oxide films were prepared by RF reactive magnetron sputtering. The effect of sputtering conditions on structural and optical properties was investigated systemically as a function of sputtering pressure(5~20 mTorr) and $O_2/Ar$ flow ratio(0.08~0.4). The results of the X-ray diffraction showed that all films had only the anatase $TiO_2$ phase. At low sputtering pressure and $O_2/Ar$ flow ratio, the films had preferred orientations along [101] and [200] directions. As the sputtering pressure and $O_2/Ar$ flow ratio increased, the intensity of the 101 and 200 diffraction peaks decreased gradually. The microstructure of the sputtered films showed the fine grain size (20nm~50nm) and columnar microcrystals perpendicular to the substrate. With increasing the sputtering pressure and decreasing $O_2/Ar$ flow ratio, the sputtered films showed the more porous columnar structure. XPS analysis showed that stoichiometric $TiO_2$ films were deposited at 7 mTorr sputtering pressure and 0.2 $O_2/Ar$ flow ratio. The results of the X-ray diffraction showed that all films had only the anatase $TiO_2$ phase. Ellipsometeric analysis showed that the refractive index increased from 2.32 to 2.46 as the sputtering pressure decreased. The packing density calculated using the refractive index varied from 0.923 to 0.976, indicating that $TiO_2$films became denser as the sputtering pressure decreased.

키워드

참고문헌

  1. J. Szczyrbowshi, G. Brauer, G. Teschner and A. Zmelty, J. Non-Cryst. Solids 218, 25 (1997) https://doi.org/10.1016/S0022-3093(97)00129-4
  2. A.T. Baker, S.G. Bosi, J.M. Bell, D.R. MacFarlane, B.G. Monsma, I. Skryabin and J. Wang, Solar Energy Materials and Solar Cells 39, 133 (1995) https://doi.org/10.1016/0927-0248(95)00047-X
  3. Hisashi Fukda, Seigo Namioke, Miho Miura, Yoshihiro Ishikawa, Masaki Yoshino and Shigeru Nomura, Jpn. J. Appl. Phys. 38, 6034 (1999) https://doi.org/10.1143/JJAP.38.6034
  4. H. Tang, K. Prasad, R. Snajines and F. Levy, Sensors and Actuators 26-27, 71 (1995)
  5. Atsuo Yasumori, Kenichi Ishizu, Shigeo Hayashi and Kiyoshi Okada, Journal of materials Chemistry 8(11), 2521 (1998) https://doi.org/10.1039/a803265c
  6. Toshinobu Yoko, Lili Hu, Hiromitsu Kozuka and Sumio Sakka, Thin solid Films 283, 188 (1996) https://doi.org/10.1016/0040-6090(95)08222-0
  7. Feng Zhang, Xianghuai Liu, yingjun Mao, Nan Huang, Yu Chen, Zhinong Zheng, Zuyao Zhou, Anqing Chen and Zhenbin Jiang, Surf. Coat. Technol. 103-104, 146 (1998) https://doi.org/10.1016/S0257-8972(98)00434-4
  8. Heung Yong Ha, Suk Woo Nam, Tae Hoon Lim, In-Hwan Oh and Seong-Ahn Hong, Journal of Membrane Science 111, 82 (1997)
  9. F. Perry, A. Billard and C. Frantz, Surf. Coat. Technol. 94-95,681 (1997) https://doi.org/10.1016/S0257-8972(97)00511-2
  10. P Alexandrov, j Koprinarova and D Todorov, Pll: S0042-207X (96) 00196-0
  11. G. Brauer, J. Szczyrbowski and G. Techner, Surf. Coat. Technol, J. Non-Cryst. Solids 218, 19 (1997) https://doi.org/10.1016/S0022-3093(97)00159-2
  12. S. Ben Amor, G. Baud, J.P. Besse and M. Jacquet, Thin Solid Films 293, 163 (1997) https://doi.org/10.1016/S0040-6090(96)09106-7
  13. Li-Jian Meng and M.P. dos Santos, Thin Solid Films 226, 22 (1993) https://doi.org/10.1016/0040-6090(93)90200-9
  14. P. Babelon, A.S. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P. Sibillot and M. Sacilotti, Thin Solid Films 322, 63 (1998) https://doi.org/10.1016/S0040-6090(97)00958-9
  15. M. Ghanashyam Krishna and A. K Bhattacharya, Vacuum, Vol. 48, No. 10, 879 (1997) https://doi.org/10.1016/S0042-207X(97)00123-1
  16. John A. Thoronton, J. Vac. Sci. Technol. A4, 3059 (1986) https://doi.org/10.1116/1.573628
  17. N. Martin, C. Rousselot, C. Savall and F. Palmino, Thin Solid Films 287, 154 (1996) https://doi.org/10.1016/S0040-6090(96)08782-2
  18. N. Martin, A.M. E Santo, R. Sanjines and F.Levy Surf. Coat. Technol. 138, 77 (2001) https://doi.org/10.1016/S0257-8972(00)01127-0