References
- Lecture Notes in Mathematics Cyclic Difference Sets L. D. Baumert
- Trans. Amer. Math. Soc. v.43 A theorem in finite projective geometry and some applications to number theory J. Singer https://doi.org/10.2307/1990067
- Canad. J. Math. v.14 some new difference sets B. Gordon;W. H. Mills;L. R. Welch https://doi.org/10.4153/CJM-1962-052-2
- Design. Codes and Cryptography v.17 Multiplicative dufferences sets via additive characters J. F. Dillon https://doi.org/10.1023/A:1026435428030
- Cyclic difference sets with Singer parameters J. F. Dillon;H. Dobbertin
- Contemporary Design Theory : A Collection of Surveys. Difference sets D. Jungnickel;J. Dinitz;D. R. Stinson(eds.)
- Difference Sets, Sequence and their Correlation Properties Recent results on difference sets with classical parameters Q. Xiang;A. Pott;P. V. Kumar;T. Hellesth;D. Jungnickel
- Gauss sums. Jacobi sums and p-ranks of cyclic difference sets R. Evans;H. Hollman;C. Krattenthaler
- Trace expansion and linear span of ideal autocorrelation sequences associated to the Segre hyperoval A. Chang;S. W. Golomb;G. Gong;P. V. Kumar
- Encyclopedia of Mathematics and its Applications v.20 Finite Fields R. Lidl;H. Niederreiter
- Spread Spectrum Communications v.1 M. K. Simon;J. K. Omura;R. A. Sholtz;B. K. Levitt
- Discrete Appl. Math. v.46 no.1 Cross-Correlation of linearly and quadratically related geometric sequences and GMW sequences M. Goresky;A. H. Chan;A. Klapper https://doi.org/10.1016/0166-218X(93)90155-H
- IEEE Trans Inform Theory v.41 no.2 d-form sequence: Families of sequences with low correlation values and large linear spans A. Klapper https://doi.org/10.1109/18.370143
- A new family of ternary sequences with ideal two-level auto-correlation T. Helleseth;P. V. Kumar;H. M. Martinsen
- IEEE Trans. Inform. Theory v.35 no.2 A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span J. S. No;P. V. Kumar https://doi.org/10.1109/18.32131
- IEEE Trans. Inform. Theory v.44 Binary pseudorandom sequences of period 2m-1 with ideal autocorrelation generated by the polynomial zd+(z+1)d J. S. No;H. Chung;M. S. Yun https://doi.org/10.1109/18.669400
- IEEE Trans. Inform. Theory v.44 Binary pseudorandom sequences of period 2n-1 with ideal autocorrelation J. S. No;S. W. Golomb;G. G. Gong;H. K. Lee;P Gaal https://doi.org/10.1109/18.661528
- p-ary unified sequences: p-ary extended d-form sequences with ideal autocorrelation properties J. S. No
- Ph. D. Dissertation From cyclic Hadamard difference sets to perfectly balanced sequences H. A. Lin