DOI QR코드

DOI QR Code

New Cyclic Difference Sets with Singer Parameters Constructed from d-Homogeneous Functions

d-동차함수로부터 생성된 Singer 파라미터를 갖는 새로운 순회차집합

  • 노종선 (서울대학교 전기·컴퓨터공학부)
  • Published : 2002.02.01

Abstract

In this paper, for any prime q, new cyclic difference sets with Singer parameter equation omitted are constructed by using the q-ary sequences (d-homogeneous functions) of period $q_n$-1. When q is a power of 3, new cyclic difference sets with Singer parameter equation omitted are constructed from the ternary sequences of period $q_n$-1 with ideal autocorrealtion found by Helleseth, Kumar and Martinsen.

본 논문에서는 소수 p의 멱승인 q에 대해서 주기 $q_n$-1인 q진 시퀸스(d-동차함수)로부터 Singer 파라미터 equation omitted를 갖는 새로운 순회차집합을 생성하였다. q가 3의 멱승일 때, Helleseth, Kumar, Martinsen의 주기가 $q_n$-1이고, 이상적인 자기상관성질을 갖는 3진 시퀸스로부터 Singer 파라미터 equation omitted를 갖는 새로운 순회 차집합을 생성시킨다.

Keywords

References

  1. Lecture Notes in Mathematics Cyclic Difference Sets L. D. Baumert
  2. Trans. Amer. Math. Soc. v.43 A theorem in finite projective geometry and some applications to number theory J. Singer https://doi.org/10.2307/1990067
  3. Canad. J. Math. v.14 some new difference sets B. Gordon;W. H. Mills;L. R. Welch https://doi.org/10.4153/CJM-1962-052-2
  4. Design. Codes and Cryptography v.17 Multiplicative dufferences sets via additive characters J. F. Dillon https://doi.org/10.1023/A:1026435428030
  5. Cyclic difference sets with Singer parameters J. F. Dillon;H. Dobbertin
  6. Contemporary Design Theory : A Collection of Surveys. Difference sets D. Jungnickel;J. Dinitz;D. R. Stinson(eds.)
  7. Difference Sets, Sequence and their Correlation Properties Recent results on difference sets with classical parameters Q. Xiang;A. Pott;P. V. Kumar;T. Hellesth;D. Jungnickel
  8. Gauss sums. Jacobi sums and p-ranks of cyclic difference sets R. Evans;H. Hollman;C. Krattenthaler
  9. Trace expansion and linear span of ideal autocorrelation sequences associated to the Segre hyperoval A. Chang;S. W. Golomb;G. Gong;P. V. Kumar
  10. Encyclopedia of Mathematics and its Applications v.20 Finite Fields R. Lidl;H. Niederreiter
  11. Spread Spectrum Communications v.1 M. K. Simon;J. K. Omura;R. A. Sholtz;B. K. Levitt
  12. Discrete Appl. Math. v.46 no.1 Cross-Correlation of linearly and quadratically related geometric sequences and GMW sequences M. Goresky;A. H. Chan;A. Klapper https://doi.org/10.1016/0166-218X(93)90155-H
  13. IEEE Trans Inform Theory v.41 no.2 d-form sequence: Families of sequences with low correlation values and large linear spans A. Klapper https://doi.org/10.1109/18.370143
  14. A new family of ternary sequences with ideal two-level auto-correlation T. Helleseth;P. V. Kumar;H. M. Martinsen
  15. IEEE Trans. Inform. Theory v.35 no.2 A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span J. S. No;P. V. Kumar https://doi.org/10.1109/18.32131
  16. IEEE Trans. Inform. Theory v.44 Binary pseudorandom sequences of period 2m-1 with ideal autocorrelation generated by the polynomial zd+(z+1)d J. S. No;H. Chung;M. S. Yun https://doi.org/10.1109/18.669400
  17. IEEE Trans. Inform. Theory v.44 Binary pseudorandom sequences of period 2n-1 with ideal autocorrelation J. S. No;S. W. Golomb;G. G. Gong;H. K. Lee;P Gaal https://doi.org/10.1109/18.661528
  18. p-ary unified sequences: p-ary extended d-form sequences with ideal autocorrelation properties J. S. No
  19. Ph. D. Dissertation From cyclic Hadamard difference sets to perfectly balanced sequences H. A. Lin