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ABSTRACT

Ordering it used to reduce the amount of fill~ins in the Cholesky factor of a symmetric positive de—
finite matrix. One of the inost efficient ordering methods is the minimum degree ordering algo-—
rithm (MDO). In this paper, we provide a few techniques that improve the performance of MDO imple—~
mented with the clique storage scheme.

First, the absorption of nodes in the cliques is developed which reduces the number of cliqgues and
the amount of storage space required for MDO. Second, we present a modified minimum degree or—
dering algorithm of which the number of degree updates can be reduced by introducing the lower
bounds of degrees. Third, using both the lower and upper bounds of degrees, we develop an ap—
proximate minimum degree ordering algorithm. Experimental results show that the proposed algo—
rithm is competitive with the minimum degree ordering algorithm that uses quotient graphs from the

points of the ordering time and the nonzeros in the Cholesky factor,
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1. INTRODUCTION

Interior point methods for a linear programming problem compute a direction
vector at each iteration. Most of the computations at each iteration are involved

in the solution of a large sparse linear system, AGATx =b, where ® is a di-
agonal matrix ([10]). The linear systems are typically solved by factoring
M = A®AT into M =LL", where L is a lower triangular matrix with positive

diagonal elements. The matrix L is called the Cholesky factor of M.

To factorize large sparse positive matrices into Cholesky factor efficiently, it
is necessary to keep the sparsity of L as high as possible because the total compu-
tations required are determined by the number of nonzeros of L. On the other
hand, the sparsity of L depends heavily on the sequence of the rows of M. So, the
number of nonzeros of L can be reduced by ordering of the rows (or columns) of M.

Finding the optimal ordering that minimizes the number of nonzeros of L is
known to be NP-complete ([18]). Heuristic methods for carrying this out are
minimum degree ordering, minimum deficiency ordering, and nested dissection
(8,9, 11, 15, 17]). Of the three heuristic methods, the minimum degree ordering
algorithm (MpO) is the most widely used because of its good computational per-
formance.

MDO was first suggested by Tinney and Walker [17]. Subsequently, various
enhancement techniques for MDO have been developed: indistinguishable nodes,
incomplete update, multiple elimination, and external degree ([8, 12]). An ap-
proximate minimum degree ordering algorithm was recently developed by Ames-
toy et al. [1].

For the fast implementation of MDO, the elimination graphs need to be updat-
ed efficiently. There are two schemes for storing the elimination graphs: quotient
graph scheme and clique storage scheme. Quotient graphs were suggested by
George and Liu [6], and most of the ordering codes use quotient graphs ([6, 7]). In
the quotient graph scheme, the adjacent nodes of a node is calculated from the
adjacent list of the node. On the other hand, the clique storage scheme was sug-
gested by Speelpenning [16] before quotient graphs. In the clique storage scheme,
the elimination graph is split into the cliques throughout ordering, and the adja-
cent nodes of a node are calculated by searching all cliques including the node.
Recently, a hybrid scheme was proposed where some of the adjacency structure of
the elimination graphs are expressed with quotient graphs, and the others are
expressed with cliques ([1]). However, no efficient implementation of MDO that
uses the clique storage scheme are known to the authors. Hence, in this paper we
provide a few techniques that can improve the performance of MDO using the
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clique storage scheme.

The organization of the paper is as the following: First, the absorption of no-
des in the cliques is developed which reduces the number of cliques and the
amount of storage space required for MDO (in Section 2). Second, we present a
modified minimum dégree ordering algorithm of which the number of degree up-
dates can be reduced by introducing of the lower bounds of degrees (in Section 3).
Third, using both the lower and the upper bounds of degrees, we develop an ap-
proximate minimum degree ordering algorithm (in Section 4). Finally, Computa-
tional results show that the proposed algorithm is competitive with the minimum
degree ordering algorithm that uses quotient graphs from the points of the or-
dering time and the nonzeros in the Cholesky factor (in Section 5).

2. THE MINIMUM DEGREE ORDERING USING THE CLIQUE STORAGE
SCHEME

MDO is a symmetric version of Markowitz’'s ordering. It selects the next nodes of
minimum degree from the elimination graphs. For details, see [7].

Let M = A®AT be an mxm symmetric positive definite matriz, where
A is an mxn matrix and © is a diagonal matrix with positive diagonal
values. The nonzero pattern of M can be expressed by the graph G =(N,E)

where N ={1,, ---,m} denotes the set of rows (columns). An undirected
edge (t,/) is in E if and only if a; #0, i # j. We call the graph G the asso-
ciated graph of M. let Adj;() denote the set of nodes adjacent to i in G,
that is, Adj())={u=N|(,r)e E}, and Deg;(+) denotes the degree of i. Note
that Degg(i) =1Adjg(f) where |-| is the cardinality of a set.

At the (i-1)-th step, MDO selects node x of minimum degree from
Gi_y =(N;_|,E; ;). Then, the selected node x is eliminated from G;_, and some

edges are added. Formally, the transformed graph G; =(N,, E,) from G, is

obtained as the following:
N; =Ny -{x}
E; = (E;i.) —{(u,x)(u,x) € E;_ hU
e E,_ (x,v)eE, |, (x,y)c E;, 1}
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MDO repeats the same procedure until all of the nodes are eliminated. At the
first step, we set G, to G. The series of graphs, G,,G,,---, are called the elimina-

tion graphs.
Most of the computations in MDO are involved in transforming graph G;_; to G;

and updating the degrees of nodes. Consequently, the storage scheme for the elimina-
tion graphs greatly affects the performance of MDO. There are two storage schemes:
the quotient graph model and the clique storage scheme. In this study, we consider
only the clique storage scheme. For the quotient graph model, see [6] and [7].

In the clique storage scheme, the elimination graph G; is split into cliques,

and transformation of the elimination graphs corresponds to merging some
cliques. In graph theory, a clique C is defined as a graph in which there is an edge
between every pair of two distinct nodes. Let n(C) and e(C) denote the set of no-
des and the set of edges, respectively, of the clique C. The number of nodes of the
clique C is called the clique size of C. Let C(V) denote the clique whose node set is
V. Let K denote a set of cliques {C,,Cs,---,C,}. If the following two conditions are

satisfied, K is called a clique cover of G = (N, E ).
n(CHUR(Cy)--Un(C,) = N
e(C))Ue(Cy)-Ue(C,) =E .

The cardinality of K, | K|, is called the size of clique cover K.
Let K be a clique cover of G. Also, let {C},---,C}} be the subset of K that

consists of all the cliques including the node u. Then, the set of nodes adjacent to
u is represented by the following:

Adjg @) =n(CHU--Un(C) —{u}.

Let node x be selected as the next node to be deleted from G;_;. Also, let K, ,

denote a clique cover of G, ;. Let Ci,--,Ci denote the cliques whose node sets
include the node x. Transforming from G, ; to G; corresponds to updating the

clique cover K, ; of G;, into the clique cover K; of G;. Let C(V) denote the
clique with V =n(C{)U---Un(Cf)-{x}. Then, K; can be obtained as the follow-
ing:

K, =(K, ; ~{C{,,C; hU{C(V)} .

We call this procedure clique merging. It merges all the cliques including no-
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de x into the new clique C(V), We call C(V') the merged clique of Cy,---,Cff. After
merging the cliques, the degree of nodes adjacent to xin G,_; need to be updated
to the degrees in G;. Merging the cliques and updating the degrees spend most of
the execution time of MDO.

In interior point methods for linear programming, MDO determines the order
of the rows (columns) of matrix M = A®AT . Throughout this paper, it is as-
sumed, without loss of generality, that each row and column of A have at least
one nonzero element. Also, no accidental cancellation is assumed in matrix multi-
plication and addition.

Let G=(IN, E) be the associated graph of matrix M. For any subset V of N, the
graph G(V)=(V, E(V)), where E(V)={G,))cElieV,jeV} and is called a in-
duced subgraph of G. Let A, denote the s-th column of matrix A and V =

{ry, rg,--, r; }be the set of row indices of nonzero elements of A;. It is known

that that the induced subgraph G(V) of G is a clique ([13]). Moreover,
K ={C,,---,C,}is a cliyue cover of G where C;(t =1,---,n) is the clique whose node
set is equal to the set of row indices of nonzero elements of A;.

There may exist many clique covers of the graph G. However, the clique cov-
ers of smaller size are better with respect to execution time and storage require-
ment. Mostly, the computation time for transforming the elimination graphs and
updating degrees is expected to be proportional to the number of cliques involved
in these operations. Also, we may expect that the clique cover of smaller size
needs less storage space. Finding a clique cover of G with minimum size is known
to be NP-complete ([1]). One of the techniques for obtaining a clique cover of
smaller size is element absorption ([2]).

Let K be a clique cover of G with K ={C,,C,,---,C,}. The basic idea of ele-

ment absorption is that if n(C;) = n(C;) for some i and j, then K'=K-{C,;} is
also a clique cover of G with |K'|=|K |-1. In practice, finding a clique that is

absorbed by other cliques may require much computational effort. In the next
theorem, the generalization of element absorption is provided, which enables us
to perform element absorptions with a small amount of computation.

Theorem 1: Let K denote a clique cover of G, and CY,-,C{ denote all the
cliques of K that include node u. Suppose that for a clique
C;(1<j<k), thereexists I c{1,2, -, k}-{j} such that
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e(C¥) c | Je(Cl) .

iel
Let Vbe n(C})-{u} and K' denote

(K -{CiHU{C(V)} .
Then, K’ isalso a clique cover of G.

Proof: If n(C;)={u}, K' is obviously a clique cover of G. Suppose that

n(C%) # {u} . Let v be any node in n(C3)—{u} . Then, there exists the edge

(v,u) in G. It is enough to show that the edge set of at least one clique, ex-

cept vC'~‘, includes the edge (v, w). If the condition of the theorem is satis-

fied, then e(C})c |Je(C!) and ve|Jn(C!). That is, there exists a
il iel

clique Cf, such that tel and veC;. By the definition of I, the clique

C/, includes the edge (u,v). [

By Theorem 1, we reduce the number of cliques that include node u. We call
this procedure in Theorem 1 node absorption. Every element absorption can be
accomplished by performing node absorptions repeatedly. If the cliques of a clique
cover of the elimination graph is sorted in non-increasing order of their clique
sizes, then node absorptions can be performed with a little computation during
the calculation of the set of adjacent nodes. To perform element absorption,
(IKI(IK!-1)/2) additional comparisons among the cliques are required, while
node absorption can be performed by only searching the cliques including adja-
cent nodes during updating the degrees of nodes.

3. A minimum degree ordering using the lower bounds of degrees

By representing the elimination graphs by the clique covers, we easily obtain the
lower bounds and the upper hounds of degrees of nodes.

Theorem 2: Let K be a clique cover of G, and CY,---,Cy be all the cliques of K
that include node u. Then.
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k
max (| n(C{') | -1) < Degg(w) < 3. (I1n(CF) 1 -1)

i-1
Proof: Since (n(C}')-{u}) is a subset of Adj;(u) for all i(1<i<k), we find
Degg(uw) =1 Adjg(w) | 21 n(C}) —{u} | .
Therefore, we obtain a lower bound of the degree of u as the following:

Deg () 2 max (| n(Cy)-1).

Also, we can obtain an upper bound of the degree of u as the following:
Degg(w) = | Adje () |=1(n(CY) —{uPU---U(n(Cy) ~{uh |

k
<¥ (neH1-v.

i=1
O

Two nodes, u and v, are said to be indistinguishable if
Adjg(u)U{u} = Adjg () w {v}

If w and v are indistinguishable in the elimination graph G,_,, these nodes re-

main indistinguishable until they are deleted from the elimination graphs. There-
fore, to treat indistinguishable nodes as one supernode speeds up the performance
of MDO. The next lemma provides lower bounds of degrees for the case where the
indistinguishable nodés are deleted simultaneously.

Lemma 3: Suppose that x, is selected as the next node to be deleted from G,_;.
Let {x;,x3,---,x,} denote the set of indistinguishable nodes from x,
in the elimination graph G, ;. If the indistinguishable nodes are de-
leted simultaneously, then the degrees of nodes in G, transformed

from G;_, satisfy the following inequality:

Deg; ()2 Degg (W) ~p, YueN;.
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Proof: If u is not an element of Adj, (x;), then Deg, (u) is equal to
DegG__1 (u). Therefore, the lemma is satisfied. Next, suppose that u is an

element of Ade_] (x;) . Then, we find that

| Degg (u) | | Adjg (w)

| Adjs, @)U(Adjg, (%)~ ) iz, 2}
| Adjg (U(Adjg_, ()~ ) -1 {xy,+-,2,)

il

v

| Adj; ()| -p = Degg, (u)-p.
O

Lemma 3, which considers the case where the indistinguishable nodes are
deleted simultaneously, is a generalized version of observation 2 in [8]. Another
lower bound of the degree can be derived from the clique covers of the elimination

graphs. Let K, denote a clique cover of elimination graph G, , and K[ denote
the subset of K, that consists of all the cliques including node u. Let
Ldeg; (u) = Degg, (u) for all u € N, . In the elimination graph G, (¢ 21), we de-
fine another lower bound of the degree, Ldeg (u), recursively as the following:
max{(Ldegg_ (u) —p),(gl.';l{)f In(C)-D} if ue Adjg_(x)

Ldeg, (u) =
G Ldeg,, () if ue Adjg_(x,).

Theorem 4: For any i, the following inequality is satisfied:

Ldeg, (u) < Deg, (w), Yue N;.

Proof: By Theorem 2 and Lemma 3, the theorem obviously holds. [

It is possible to avoid updating degrees of nodes, which may not be the mini-
mum degree nodes of the next elimination graphs, by using lower bounds of de-
grees. The minimum degree ordering algorithm using lower bounds of degrees
(MDOL) 1s as follows:
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A minimum degree ordering algorithm using the lower bounds of de-
grees (MDOL)

1: Set G, < G=(N,E) and :=0.
Calculate Deg, (u) forall ue N.

While N-S =g do

2

3: Set L@, D« N, and S« 0.

4

5 Compute mindeg = mi‘gDegG‘ ).
je '

6: For uefvel| LdegGi V) < mindeg},

7 compute chGi (w) and

8: set L« L-{u} and D« DU{u}.
9: Find x; such that DegG. (x)) = 1}16111)1 Dega ).
10: Set S(—*SU{xl,x2,---,xp}.

il Transform G; to G,,; .

12: For each u e Adjg (x,),

13: calculate Ldegg () and

14: set L« LU{u} and D« D—{u}.
15: Set i e i+1.

16: End of While

In MDOL, L represents the set of nodes for which only the lower hounds of the
degrees are calculated. On the other hand, D is the set of nodes of which the de-
grees are calculated. The set S is the set of nodes that has been deleted from the
elimination graphs.

VM )oL is different from the minimum degree ordering algorithm in two ways.
First, MDOL does not update the degrees of the nodes that are adjacent to the de-
leted nodes. Instead, MDOL updates only the lower bounds of the degrees of those
nodes. Second, MDOL calculates the degrees of nodes that are only expected to
have minimum degree. That is, the calculation of degrees is considered only for
the nodes for which the lower bounds of degrees are less than or equal to the up-
per bound of the minimum degree of the elimination graphs. If the nodes that are
adjacent to the deleted nodes have large degrees, MDOL can avoid unnecessary
degree updates of those nodes.
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4. A MINIMUM DEGREE ORDERING ALGORITHM USING THE LOWER
AND UPPER BOUNDS OF DEGREES

Let G; =(N;, E;) denote the elimination graph at the i-th iteration of MDO. For
any node ve N;, let K denote the subset of the clique cover K, of G, , where
all of the cliques in K; include node v. Also, for any subset X of N,, let Kf

denote the subset of K; where KX =|J K}.
reX

Lemma 5: Suppose X ={x,,-,x,} is a set of indistinguishable nodes and the
nodes of X are selected as the nodes to be deleted from G, ;. Also, let
C. denote the merged clique of all the cliques of K;’fl. For any
ve Ade;—l (x),

D <D Co)l - Ol.
eg;,) < Degg, @) +1n(C) |~ max  [n(C)]

Proof: Let DegGi v = Dega,._, W)+ A for some integer A. And let V denote the
set of adjacent nodes of v in the induced subgraph Gi—l(Ade_._l (x)-X).
The newly added edges to G, are only the edges whose both endpoints
are in Ade.-_, (x,)-X and which are not in Gi_l(AdeH (%,)—X) . There-
fore, the number of nodes newly adjacent to node v in G; is
'Adei-, (x)-X{-1-1V|. Since all nodes of X are deleted from G, , si-

multaneously, p edges are removed. It follows that

A=]Adj; (x))~X|-1-|V|-p.

Let the set of the removed edges be P. Here, lAde-, (x)-XI1=In(Cs)l. And,
|Vi+p= cobax |n(C)| -1, since any clique Ce K?;NKZ, is composed of all
edges in P and a subset of V. Thus, we obtain

A<In(C) - max  [n(C)].
CeK!, NK}

ey
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Let Udegg (v) = Deg, (v) for all ve Ny. In the elimination graph G;(i 21),

we define the upper bound of the degree, UdegGi (v), recursively as the following:

min (Udegs_ () +1n(C.) |- 1n(Chu) |,
Udeg; (v) = Xer: ! MO -1} if ve Adj;_ (%))
[ Udegai_1 ) if ve Adjg_(x)).

where C. and Cj ., are defined in Lemma 5.

Theorem 6: For any i, the following inequality is satisfied:

UdegG, (U) = DegGi (U), Yv e Ni‘

Proof: The theorem is derived directly from Theorem 2 and Lemma 5. O

Now that the lower and upper bound of the degree of each node can be ob-
tained by Theorem 4 and 6, we can calculate an approximate degree of each
node. An approximate degree of a node v can be set by the function

f(Ldeg (v), Udeg (v)), which must satisfy the following inequality:
Ldeg (v) < f(LdegG‘_ ), UdegGi () <Udeg, (v), ViveN;.

Although the degree of any node can be approximated, the approximation are
only applied to the nodes for which the gaps between the lower and upper bounds
are small, in order to keep the differences between the approximate degrees and
the exact degrees remaining moderately small. An approximate minimum degree
ordering algorithm (MDOLU) that calculates the approximate degrees by lower and
upper bounds of degrees is as follows:

An approximate minimum degree ordering algorithm using the lower
and upper bounds of degrees (MDOLU)

1: Set Gy« G=(N.E) and i=0.
2:  Calculate Deg, (v) forall ve N.
3: Set Adeg; (V) « Deg; (v) forall ve N .
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10:
11:
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13:

14:
15:
16:
17:

18:
19:
20:
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‘Set L@, D« N, and S « 4.

While N-S =8 do
Compute minadeg = milglAdegG_ .
Je !

For ue{velL|Ledgg (v) < minadeg},
if UdegG‘ (u) - LdegGi (1) <8, then
set Adegg (u) « f(Ldegg, (1), Udegg (w)).
else
compute DegGi (u) and set AdegG'_ (1) « DegGi (u).
set L« L-{u} and D« DU{u}.
Find x, such that AdegGi (x) = 1}15111)1 Adegg (J)-

Set S« SU{x,xy,-, X, } where x;,---, x, are indistinguishable,

P
Transform G;; to G;.
For each u e Adjg_ (x).
calculate Ldegg (u) and Udegg (u) and
set L« LU{u} and D « D-{u}.
Set 1« i+1.
End of While

In MDOLU, AdegGi (v) has the approximate degree or the degree of v in the i-

th elimination graph G;. The set D of nodes includes the nodes for which the de-

grees or the approximate degrees in G; are known. On the other hand, the set L

of nodes includes the nodes for which only the lower and upper bounds of degrees

are calculated. In MDOLU, when some nodes are selected as the next deleted nodes

in G;, the approximate degrees or the degrees of those nodes in G are calcu-

lated. On the other hand, in MDOL the degrees of the nodes that are selected as

the next deleted nodes have to be calculated. This implies that the number of de-

gree updates of MDOLU is usually less than that of MDOL. Note that if & issetto 0

in MDOLU. MDOLU is the same with MDOL.
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5. IMPLEMENTATION AND COMPUTATIONAL RESULTS

Before the computational results are presented, some important implementation
techniques for improving the performance of MDOL and MDOLU are discussed.
The technique usiad for detecting indistinguishable nodes has much effect

on the computational time of MDO. For any node u, we define Nbd, (u) as

Adj, (w)U{u}. A new hashing technique for detecting indistinguishable nodes is
proposed as follows: First, the integer value H(u) is assigned to each node u before
the ordering is started. During the calculation of the exact degree of node u, the

following sum S (u) is also computed:

S6,(@) =( X jen, @ H()) mod MAXINT.

where MAXINT is a large positive integer. If the degree of node u is equal to the
degree of node v and S (v) is equal to S; (v), then the two nodes v and v are

regarded as indistinguishable. In our implementation, we set Hu) as the follow-
ing:

H(u) = I_log(c. XU+ Cy )J+ L(log(c1 XU +Co) —[_log(c1 XU+ cﬂ)_] )* 107J

where ¢; and ¢, aré positive integers. However, this indistinguishable node

detection technique may mistake ‘not’ indistinguishable nodes for indistinguish-
able nodes. From our experimental results of various linear programming prob-
lems, the possibility of the mistakes seems very small.

MDOLU calculates the approximate degrees of nodes using the lower and up-
per bounds of degrees. In our implementation, the approximation of the degree of
any node u is allowed if the difference between the lower and upper bounds of
degrees is less than or equal to 6. The appropriate value of & depends on the
number of rows of matrix A. For the case where the number of rows of A is less
than 500, o is set to 10. If the number of rows of A is greater than 1000, & is set
to 20, otherwise, & is set to 15. Given the lower and upper bound of the degree of
node u, the approximate degree of u, f (Ldegg, (w), UdegG__ (w)), is calculated by the

following:

f(Ldegg (u), Udega (u)) = Ldegs (u)+0.6 x (Udeg (u) - Ldeg (u)).



14 PARK, DOH, PARK AND KIM

The equation above is derived from our experiments that the exact degrees
tend to be slightly greater than the mean value of the lower and upper bounds of
degrees.

We also use the multiple elimination technique, external degrees of nodes,
and node absorption. The approximate external degree of a node is set to the ap-
proximate degree of the node minus the number of indistinguishable nodes de-
tected.

As more nodes are deleted, the elimination graphs become more dense. This
implies that the corresponding submatrix of Cholesky factor L becomes more
dense. Therefore, at some stage of the ordering procedure, dense window detec-
tion will be desirable. In our implementation, if the minimum of the upper bounds
of degrees is sufficiently close to the number of nodes remaining in the elimina-
tion graphs, the ordering procedure will terminate immediately after deleting the
remaining nodes all together.

The experimental results are provided in Tables 1. The computational ex-
periments were carried out on a SunSparc Ultra 170 (128M). The first four co-
lumns of Table 1 describe the name of the problem, the number of rows, the num-
ber of columns, and the number of nonzeros of matrix A. To compare ordering
times and the number of nonzeros of the Cholesky factor effectively, only large
problems are selected from NETLIB ([5]) and the University of Iowa.! The fifth
column represents the ordering time of MDO, which uses multiple elimination and
external degree, but none of lower and upper bounds of degrees. The sixth column
represents the number of nonzeros of Cholesky factor L, and the seventh column
NUPD represents the total number of degree updates, that is, the number of cal-
culations of exact degree except the initializations of the degrees of nodes, during
MDO. The eighth column represents the total storage space required for the initial
clique cover after node absorptions are applied. If node absorption is not carried
out, then the amount of the storage space required will be equal to the number of
nonzeros of A. The ninth ~ eleventh columns represent the ordering time, the
number of nonzeros of L, and the number of degree updates of MDOL, respectively.
Similarly, the twelfth ~fourteenth columns represent the ordering time, the
number of nonzeros of L, and the number of degree updates of MDOLU, respec-
tively. In addition, Table 1 also shows the computational results of two other or-
dering codes: Liu’s MMD code [12], and CPLEX (ver 4.0) Barrier Solver’s approxi-
mate minimum degree ordering routine (CPLEXAMD) in the fifteenth ~ eighteenth
columns.

! ftp://col.biz.uniowa.edu/pub/testprob/lp
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Comparing the number of nonzeros of A (the fourth column) with the storage
space required for the initial clique cover, we observe that node absorptions re-
duce the amount of the storage space by about 20% ~ 50% of the number of nonze-
ros of A. However, this reduction of the storage space has only a slight effect on
the ordering time in our experiments. This means that it is desirable to use node
absorptions to reduce the storage space required during the ordering. MDOL and
MDOLU both use node absorptions.

The introduction of lower bounds of degrees dramatically reduces the compu-
tational time and the number of degree updates. Compared with MDO, the order-
ing time of MDOL is reduced to 2 ~ 10 times that of MDO. Also, the number of de-
gree updates of MDOL is reduced to about 1/5 ~ 1/2 times that of MDO. Compared
with MDOL, the ordering time and the number of degree updates of MDOLU is re-
duced by 10% and 50%, respectively, on average. These results imply that using
the lower and upper bounds of degrees can reduce significantly the ordering time
and the number of degree updates.

MMD code performs the minimum degree ordering algorithm using multiple
elimination and external degrees. MMD use the quotient graph data structure.
Before calling the ordering routines of MMD, the adjacent list of each node in the
initial elimination graph is set up beforehand and passed over to the ordering
routines of MMD. The time required to set up the adjacent list of each node is not
counted in the ordering times of MMD.

Compared with MMD, MDOLU is more than one and a half times faster than
MMD in 25 out of 30 problems. In fact, MDOLU is more than three times faster than
MMD in 19 out of 30 problems. For the nonzeros of the Cholesky factor, MDOLU is
almost as good as or better than MMD in 8 out of 30 problems. In seventeen prob-
lems, the number of nonzeros of the Cholesky factor obtained by MDOLU is within
(1 + 0.05) times the number of nonzeros of the Cholesky factor obtained by MMD.
In almost all of the 30 problems, it is within (1 + 0.1) times the number of nonze-
ros of the Cholesky factor obtained by MMD. In only one problem, the number of
nonzeros of the Cholesky factor obtained by MODLU is 10% larger than that of the
Cholesky factor obtained by MMD. In conclusion, the increase in the number of
nonzeros of the Cholesky factor of MDOLU was negligible in almost all tested
problems.

Finally, compared with CPLEXAMD, MDOLU is faster than CPLEXAMD in about
half of the 30 problems. Moreover, with respect to the number of nonzeros of the
Cholesky factor, MDOLU is better than CPLEXAMD. However, since CPLEXAMD 1is
known to use a dense window technique and other techniques to speed up the
numerical factorization of the Cholesky factor, the smaller number of nonzeros of
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the Cholesky factor by MDOLU may not imply directly that the ordering of rows by
MDOLU is better than CPLEXAMD for the numerical factorization of the Cholesky
factor. Nevertheless, the number of nonzeros of the Cholesky factor is the most
widely used criterion for the quality of the ordering.

6. CONCLUSION

In this paper, we presented a minimum ordering algorithm that uses the lower
and upper bounds of degrees. By the lower bounds of degrees, unnecessary up-
dates of degree can bé delayed. As a result, the number of degree updates of the
minimum degree ordéring algorithm can be reduced significantly. By the upper
bounds of degrees, we suggested another degree approximation technique. Also,
the node absorption téchnique, which is a generalization of element absorption, is
proposed. The node absorption reduces the storage space required for the ap-
proximate minimum degree ordering algorithm using the clique storage scheme.
The node absorption can be performed with a little computational effort.

Finally, the experiment results show that the proposed minimum degree or-
dering algorithm using the clique storage scheme is comparable to the existing
minimum degree ordering algorithm using the quotient graph data structure.

Acknowledgement: We are grateful to anonymous referees for their helpful
comments on the first version of this paper.
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