DOI QR코드

DOI QR Code

Characterization of a New Gene Resistant to Alkylating Agents and 3-Aminobenzamide When Knocked Out in Fission Yeast

분열형 효모에서 유전자 결실에 의해 알킬화제와 3-AMINOBENZAMIDE에 저항성을 나타내는 새로운 유전자의 특성 분석

  • 박종군 (원광대학교 자연대 생명과학부) ;
  • 차재영 (원광대학교 자연대 생명과학부) ;
  • 황성진 (원광대학교 자연대 생명과학부) ;
  • 박세근 (원광대학교 자연대 생명과학부) ;
  • 김미영 (원광대학교 자연대 생명과학부) ;
  • 백성민 (원광대학교 자연대 생명과학부) ;
  • 최인순 (신라대학교 자연대 생물과학부) ;
  • 이정섭 (조선대학교 자연대 샘영과학과)
  • Published : 2002.04.01

Abstract

The organization of eukayotic chromatin into specific conformation that are associated with transcription, replication, reapir and other nuclear processes are achieved via a series of DNA-protein interaction. These interactions are mediated by a range of DNA-binding domains such as SAP domain et at. By searching S. pombe genomic DNA database, we have found a gene named SAPuvs (SAP UV Sensitive) whose amino acid sequence is in part similar to SAP domain of Arabidopsis poly (ADP-ribose) polymerase and Ku7O. Knock-out cell of S. pombe SAPuvs gene was constructed using Ura4 as a selection marker. Survival analysis of knock-out cell indicated that treatment with UV significantly reduces the survival compared to wild type cell. Potentiation of MMS-induced cytotoxicity by 3AB post-treatment was observed in wild type cells, but not in knock-out cells. These data suggested that the protein encoded by SAPuvs gene is associated with chromatin reorganization during DNA repair.

진핵세포의 염색체는 전사, 복제, 회복 등의 과정에서 관여하는 단백질의 기능으로 구조가 변하게 된다. 이때 관여하는 단백질은 DNA-단백질의 상호작용에 의해서 이루어지게 되는데, 이때 단백질의 일부분은 일정한 상동성이 존재하게 된다. 이러한 부분은 motif나 domain으로 구성되는데, 예를 들면, SAP domain등을 들 수 있다. S. pombe genomic DNA 데이터베이스를 검색하여 Arabidopsis PARP 과 KU70과 상동성을 보이는 새로운 유전자를 찾았다. 이를 SAPuvs (SAP UV Sensitive)라 명명하였으며, Ura4를 선별표지로 이용하여 S. pombe SAPuvs 유전자 결실세포를 구성하였다. SAPuvs 유전자 결실세포는 자외선 조사 실험에서 정상의 세포에 비해 현저하게 죽었다. 그러나, MMS 또는 MMS와 3AB의 처리 실험에서는 저항성을 보였다. 이러한 결과로 SAPuvs는 DNA 상해회복에서 염색사구조 형성에 연관되어 있음을 확인하였다.

Keywords

References

  1. Trends Biochem Sci. v.20 The PHD finger: implication for chromation-mediated transcriptional regulation Aasland;R.;T. J. Gibson;A. F. Stewart https://doi.org/10.1016/S0968-0004(00)88957-4
  2. Trends Biochem Sci. v.21 The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Aasland;R.;A. F. Stewart;T. Gibson
  3. Nucleic Acids Res v.25 Gapped BLAST and PSI-BLAST:a new generation of protein database search programs Altschul;S. F.;T. L. Madden;A. A. Schaffer;J. Zhang;Z. Zhang;W. Miller;D. J. Lipman https://doi.org/10.1093/nar/25.17.3389
  4. Trends Biochem. Sci v.25 no.3 SAP-a putative DNA-binding motif involved in chromosomal organization Aravind;L.;E. V. Koonin https://doi.org/10.1016/S0968-0004(99)01537-6
  5. Nucleic Acids Res v.26 AT-hook motifs identified in a wide variety of DNA-binding proteins Aravind;L.;D. Landsman. https://doi.org/10.1093/nar/26.19.4413
  6. Nuecleic Acids Res v.23 the HMG-1 box protein family: classification and functional relationships Baxevanis;A.D.;D. Landsman https://doi.org/10.1093/nar/23.9.1604
  7. in Methods cell Biology v.12 Cryer;D. R.;R. Eccleshull;J. Marmur https://doi.org/10.1016/S0091-679X(08)60950-4
  8. Mol. Cell Biol. v.16 Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence specific DNA-binding proteins Gregory;S. L.;R. D. Kortschak;B. Kalionis;R. Saint https://doi.org/10.1128/MCB.16.3.792
  9. Nucleic Acids Res v.1 no.24;23 Fission yeast genes which disrupt mitotic chromosome segregation when overexpressed Javerzat;J. P.;G. Cranston;R. C. Allshire https://doi.org/10.1093/nar/24.23.4676
  10. Genes Dev v.13 Molecular mechanism of nucleotide excision repair Laat de;W. L.;N. G. Jaspers;J. H. Hoeijmakers https://doi.org/10.1101/gad.13.7.768
  11. FEBS Lett v.364 no.2 Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase Lepiniec;L.;E. Babiychuk;S. Kushnir;M. Van Montagu;D. Inze. https://doi.org/10.1016/0014-5793(95)00335-7
  12. Prog Nucleic Acid Res Mol Biol v.68 Keynote: past, present, and future aspects of base excision repair Lindahl;T. https://doi.org/10.1016/S0079-6603(01)68084-X
  13. Mol, Cell Biochem v.138 no.1-2 Structure and function of poly(ADP-ribose) polymerase Menissier;de Murcia J.;G. de Murcia;V. Schreiber;M. Molinete;B. Saulier;O. Poch;M. Masson;C. Niedergang https://doi.org/10.1007/BF00928438
  14. Proc Natl Acad Sci v.90 no.8 Cloning of cDNA encoding Drosophila poly (ADP-ribose) polymerase: leucine zipper in the auto-modification domain Miwa;M.;K. Uchida;S. Hanai;K. Ishikawa;Y. Ozawa;M. Uchida;T. Sugimura https://doi.org/10.1073/pnas.90.8.3481
  15. EMBO J. v.11 Characterization of SAF-A, a novel nuclear DNA-binding protein from HeLa cells with high affinity for nuclear matrix scaffold attachment DNA elemenets Romig;H.;F. O. Fackelmayer;A. Renz;U. Ramsperger;A. Richter
  16. Annu. Rev. Biochem v.65 DNA excision repair Sancar;A. S. https://doi.org/10.1146/annurev.bi.65.070196.000355
  17. Mut. Res. Volume. v.459 no.3 Nucleotide excision repair endonuclease genes in Drosophila melanogaster Scott Hawleya;R.;J. J. Sekelsky;K. J. Hollis;A. I. Eimerl;K. C. Burtis https://doi.org/10.1016/S0921-8777(99)00075-0
  18. Proc. Natl. Acad. Sci. v.91 Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks Tatusov;R. L.;S. F. Altschul;E. V. Koonin https://doi.org/10.1073/pnas.91.25.12091
  19. Biochem. Biophys. Res. Commun. v.234 Cloning and characterization of Gu-RH-Ⅱ binding protein Valdez;B. C.;D. Henning;L. Perlaky;R. K. Busch;H. Busch https://doi.org/10.1006/bbrc.1997.6642
  20. Microbiol. Rev. v.54 no.1 Nucleotide excision repair in Escherichia coli Van Houten;B.
  21. Annu. Rev. Biochem v.65 DNA repair in eukaryotes Wood;R. D. https://doi.org/10.1146/annurev.bi.65.070196.001031