참고문헌
- Trends Biochem Sci. v.20 The PHD finger: implication for chromation-mediated transcriptional regulation Aasland;R.;T. J. Gibson;A. F. Stewart https://doi.org/10.1016/S0968-0004(00)88957-4
- Trends Biochem Sci. v.21 The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Aasland;R.;A. F. Stewart;T. Gibson
- Nucleic Acids Res v.25 Gapped BLAST and PSI-BLAST:a new generation of protein database search programs Altschul;S. F.;T. L. Madden;A. A. Schaffer;J. Zhang;Z. Zhang;W. Miller;D. J. Lipman https://doi.org/10.1093/nar/25.17.3389
- Trends Biochem. Sci v.25 no.3 SAP-a putative DNA-binding motif involved in chromosomal organization Aravind;L.;E. V. Koonin https://doi.org/10.1016/S0968-0004(99)01537-6
- Nucleic Acids Res v.26 AT-hook motifs identified in a wide variety of DNA-binding proteins Aravind;L.;D. Landsman. https://doi.org/10.1093/nar/26.19.4413
- Nuecleic Acids Res v.23 the HMG-1 box protein family: classification and functional relationships Baxevanis;A.D.;D. Landsman https://doi.org/10.1093/nar/23.9.1604
- in Methods cell Biology v.12 Cryer;D. R.;R. Eccleshull;J. Marmur https://doi.org/10.1016/S0091-679X(08)60950-4
- Mol. Cell Biol. v.16 Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence specific DNA-binding proteins Gregory;S. L.;R. D. Kortschak;B. Kalionis;R. Saint https://doi.org/10.1128/MCB.16.3.792
- Nucleic Acids Res v.1 no.24;23 Fission yeast genes which disrupt mitotic chromosome segregation when overexpressed Javerzat;J. P.;G. Cranston;R. C. Allshire https://doi.org/10.1093/nar/24.23.4676
- Genes Dev v.13 Molecular mechanism of nucleotide excision repair Laat de;W. L.;N. G. Jaspers;J. H. Hoeijmakers https://doi.org/10.1101/gad.13.7.768
- FEBS Lett v.364 no.2 Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase Lepiniec;L.;E. Babiychuk;S. Kushnir;M. Van Montagu;D. Inze. https://doi.org/10.1016/0014-5793(95)00335-7
- Prog Nucleic Acid Res Mol Biol v.68 Keynote: past, present, and future aspects of base excision repair Lindahl;T. https://doi.org/10.1016/S0079-6603(01)68084-X
- Mol, Cell Biochem v.138 no.1-2 Structure and function of poly(ADP-ribose) polymerase Menissier;de Murcia J.;G. de Murcia;V. Schreiber;M. Molinete;B. Saulier;O. Poch;M. Masson;C. Niedergang https://doi.org/10.1007/BF00928438
- Proc Natl Acad Sci v.90 no.8 Cloning of cDNA encoding Drosophila poly (ADP-ribose) polymerase: leucine zipper in the auto-modification domain Miwa;M.;K. Uchida;S. Hanai;K. Ishikawa;Y. Ozawa;M. Uchida;T. Sugimura https://doi.org/10.1073/pnas.90.8.3481
- EMBO J. v.11 Characterization of SAF-A, a novel nuclear DNA-binding protein from HeLa cells with high affinity for nuclear matrix scaffold attachment DNA elemenets Romig;H.;F. O. Fackelmayer;A. Renz;U. Ramsperger;A. Richter
- Annu. Rev. Biochem v.65 DNA excision repair Sancar;A. S. https://doi.org/10.1146/annurev.bi.65.070196.000355
- Mut. Res. Volume. v.459 no.3 Nucleotide excision repair endonuclease genes in Drosophila melanogaster Scott Hawleya;R.;J. J. Sekelsky;K. J. Hollis;A. I. Eimerl;K. C. Burtis https://doi.org/10.1016/S0921-8777(99)00075-0
- Proc. Natl. Acad. Sci. v.91 Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks Tatusov;R. L.;S. F. Altschul;E. V. Koonin https://doi.org/10.1073/pnas.91.25.12091
- Biochem. Biophys. Res. Commun. v.234 Cloning and characterization of Gu-RH-Ⅱ binding protein Valdez;B. C.;D. Henning;L. Perlaky;R. K. Busch;H. Busch https://doi.org/10.1006/bbrc.1997.6642
- Microbiol. Rev. v.54 no.1 Nucleotide excision repair in Escherichia coli Van Houten;B.
- Annu. Rev. Biochem v.65 DNA repair in eukaryotes Wood;R. D. https://doi.org/10.1146/annurev.bi.65.070196.001031