참고문헌
- Gene v.26 Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli Bernier;R. Jr.;H. Driguez;M. Desrochers https://doi.org/10.1016/0378-1119(83)90036-7
- Appl. Environ. Microbiol. v.61 Protein purification and properties of xulanase A from alkali-tolerant Bacillus sp. strain BP-23. Blanco A.;T. Vidal;J. F. Colom;F. I. Pastor
- Microbiol. Rev v.45 Cyclic nucleotides in procaryotes Botsford;J. L.
- Carbohydr. Res. v.159 Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran of wheat kernel) Brillouet;J. M.;J. P. Joseleau https://doi.org/10.1016/S0008-6215(00)90009-0
- American Society for Microbioligy Biochemistry, Physiology and Molecular Genetics Chambliss;G. H.
- Carbohydr. Res. v.129 Lignin-xylan ester linkage in mesta fiber (Hibiscus cannabinus) Das;N. N.;S. C. Das;A. K. Sarkar;A. K. Mukherjee https://doi.org/10.1016/0008-6215(84)85312-4
- Mol. Microbiol. v.15 Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria Deutscher;J.;E. Kster;U. Bergstedt;V. Charrier;W. Hillen https://doi.org/10.1111/j.1365-2958.1995.tb02280.x
- J. Microbiol. Biotechnol. v.3 Selection and characterization of catabolite repression resistant mutant of Bacillus firmus var. alkalophilus producing cyclodextrin glucanotransferase Do;E. J.;H. D. Shin;C. Kim;Y. H. Lee
- Mol. Microbiol. v.11 The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system Duong;F.;C. Soscia;A. Lazdunski;M. Murgier. https://doi.org/10.1111/j.1365-2958.1994.tb00388.x
- Apple. Environ. Microbiol v.60 Cloning and DNA sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase Gat;O. A. Lapidot;T. I. Alchana;C. Regueros;Y. Shoham
- Nucleic Acids Res. v.9 Codon catalog usage is a genome strategy modulated for gene expressivity Grantham R;C. Gautier;M. Gouy;M. Jacobzone;R. Mercier
- J. Bacteriol. v.173 Pseudomonas aeruginosa alkaline protease: evidence for secretion genes and study of secretion mechanism Guzzo;J.;J. M. Pages;F. Duong;A. Lazdunski;M. Murgier https://doi.org/10.1128/jb.173.17.5290-5297.1991
- J. Mol. Biol. v.166 Studies on transformation of Escherichia coli with plasmids Hanahan D. https://doi.org/10.1016/S0022-2836(83)80284-8
- Mol. Microbiol. v.5 Catagolite repression of α-amy-lase gene expression in Bacillus subtilis involves a transacting gene product homologous to the Escherichia colilacI and gaIR repressors Henkin;T. M.;F. J. Grundy;W. L. Nicholson;G. H. Chambliss https://doi.org/10.1111/j.1365-2958.1991.tb00728.x
- Mol. Microbiol. v.15 Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria? Hueck;C. J;H. Woofgang https://doi.org/10.1111/j.1365-2958.1995.tb02252.x
- J. Bacteriol v.161 Identification of the transcriptional suppressor sof-1 as an alteration in the spo0A protein Hoch;J. A.;K. Trach;F. Kawamura;H. Saito
- Mol. Biol. Evol. v.2 Codon usage and tRNA content in unicellular and multicellular organisms Ikemura;T.
- FEMS Microbiol. Rev. v.23 Molecular and biotechnological aspects of xylanases Kulkarni;N.;A. Shendye;M. Rao. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
- J. Bacteriol. v.171 Cis sequences involved in modulating expression of Bacillus licheniformis amyL in Bacillus subtilis: Effect of sporulation mutations and catabolite repression resistance mutations on expression Laoide B. M.;D. J. J. McConnell https://doi.org/10.1128/jb.171.5.2443-2450.1989
- Kor. J. Apple. Microbiol. Biotechnol. v.25 Nucleotide sequence of the estl gene coding for Bacillus stearothermophilus acetylxylan esterase Lee;J. S.;Y. J. Choi
- EMBO J. v.9 Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin Letoffe;S.;P. Delepelaire;C. Wandersman
- Mol. Gen. Genet v.201 Genetical and functional organisation of the Escherichia coli haemolysin determinant 2001 Mackman;N.;J. M. Nicaud;L. Gray;I. B. Holland. https://doi.org/10.1007/BF00425672
- Acta Crystallogr. D. Biol. Crystallogr v.11 Structure of XynB, a highly ther-mostable beta-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1,at 1.8 A resolution McCarthy;A. A.;D. D. Morris;P. L. Bergquist;E. N. Baker
- J. Biol. Chem. v.256 Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus bata-lactamase gene McLaughlin;J. R.;C. L. Murray;J. C. Rabinowitz
- Mol. Gen. Genet. v.186 Nucleotide sequences that signal the initiation of trascription and translation in Bacillus subtilis Moran C. P. Jr.;N. Lang;S. F. LeGrice;G. Lee;M. Stephens;A. L. Sonenshein;J. Pero;R. Losick. https://doi.org/10.1007/BF00729452
- J. Bacteriol. v.172 Purification and properties of ther-mostable sylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain Nanmori T,;T. Watanabe;R. Shinke;A. Kohno;Y. Kawamura https://doi.org/10.1128/jb.172.12.6669-6672.1990
- Kor. J. Appl. Microbiol. Biotechnol. v.27 Isolation of xylanase-producing thermo-tolerant Bacillus sp. and its enzyme production Park;Y. S.;M. Y. Kang;H. G. Chang;G. G. Park;J. B. Kang;J. K. Lee;T. K. Oh
- Recombinant DNA Techniques-An Introduction Rodriguez;R. L.;R. C. Tait
- The New Biologist v.3 A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms Saier;M. H. Jr.
- Molecular cloning-A laboratory manual(3rd eds) Sambrook;J.;D. Russell
- Phytochemistry v.24 Ether linkage between phenolic acids and lignin franctions from wheat straw Scalbert;A.;B. Monisies;J. Y. Lallemand;E. Guittet;C. Rolando https://doi.org/10.1016/S0031-9422(00)81133-4
- Gene v.107 Sequences of three genes specifying xylanases in Streptomyces lividans Shareck;F.;C. Roy;M. Yaguchi;R. Morosoli;D. Kluepfel https://doi.org/10.1016/0378-1119(91)90299-Q
- J. Biol Chem. v.248 Comparative size and properties from Bacillus subtilis and Escherichia coli Shorenstein;R. G.;R. Losick
- J. Biol. Chem. v.195 Notes on sugar determinations Somogyi;M.
- Crit. Rev. Biotechnol. v.17 Xylanolytic enzymes from fungi and bacteria Sunna;A.;G. Antranikian https://doi.org/10.3109/07388559709146606
- Appl. Environ. Microbiol. v.61 Cloning and DNA sequencing of xyaA, a gene encoding an endo-beta-1,4-xylanase from an alkalophilic Bacillus strain (N137) Tabernero;C.;J. Sanchez-Torres;P. Perez;R. I. Santamaria
- Carbohydr. Chem. v.20 Wood hemicelluloses: Part Ⅱ. Timell;T. E.
- Wood Sci. Technol. v.1 Recent progress in the chemistry of wood hemicelluloses Timell;T. E. https://doi.org/10.1007/BF00592255
- coli cells. Biochemistry v.62 Purificaition and some properties of Thermotoga neapolitana thermostable xylanase B expressed in D. Velikodvorskaya;T. V.;I. Y. Volkov;V. T. Vasilevko;V. V. Zverlov;E. S. Piruzian
- Gene v.19 The pUC plasmids, an M13mp7-derived system for insetion mutagenesis and sequencing with synthetic universal primers Vieira J.;J. Messing https://doi.org/10.1016/0378-1119(82)90015-4
- Protein Sci. v.3 Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase Wakachuk;W. W.;R. L. Campbell;W. L. Sung;J. Davoodi;M. Yaguchi https://doi.org/10.1002/pro.5560030312
- Annu. Rev. Microbiol. v.50 Microbial hydrolysis of polysaccharides Warren;R. A. J. https://doi.org/10.1146/annurev.micro.50.1.183
- Proc. Natl. Acad. Sci. v.87 Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis Weickert M. J.;G. H. Chambliss https://doi.org/10.1073/pnas.87.16.6238
- Hemicelolose and Hemicellulases Applications of hemicellulases in the food, feed, and pulp and paper industries Wong;K. K. Y.;J. N. Saddler;Coughlen(ed);P. P.(ed);G. P.Hazlewood(ed)
- Microbiol. Rev. v.52 Multiplicity of β-1,4-xylanase in microorganism: Functions and applications Wong;K. K. Y.;L. U. L. Tan;J. N. Saddler
- Biochemistry v.40 Clostridium theromcellum Xyn10B carbohydratebinding module 22-2: the role of conserved amino acids in ligand binding Xie;H.;H. J. Gilbert;S. J. Charnock;G. J. Davies;M. P. Williamson;P. J. Simpson;S. Raghothama;C. M. Fontes;F. M. Dias;L. M. Ferreira;D. N. Bolam. https://doi.org/10.1021/bi0106742