참고문헌
- Choi, Y. C. 1990. Control of fungal diseases with antagonistic bacteria, Bacillus sp. AC-l. pp. 50-61. In: Proc. Int. Symp. Biological Control of Plant Diseases
- Debao, L. 1994. Biological control of plant diseases with Bacillus species. pp. 75-85. In: Proc. Int. Symp. BioIogical Control of Plant Diseases
- El Ghaouth, A., Wilson, C. L. and Wisniewski, M. E. 1995. Sugar analogs as potential fungicides for postharvest pathogens of apple and peach. Plant Dis. 79:254-258 https://doi.org/10.1094/PD-79-0254
- Filonow, A. B., Vishniac, H. S., Anderson, J. A. and Janisiewicz, W. J. 1996. Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological ControI 7:212-220 https://doi.org/10.1006/bcon.1996.0086
- Fravel, D. R., Connick Jr, W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. Formulation of microbial biopesticides. 412 p
- Galvez, A., Maqueda, M., Mardnez-Bueno, M., Lebbadi, M. and Valdivia, E. 1993. Isolation and physico-chemical Characterization of an antifungal and antibactehal peptide produced by BaciIIus licheniformis A12. MicrobioI. BiotechnoI. 39:438-442 https://doi.org/10.1007/BF00205029
- Gould, A. B., Kobayashi, D. Y. and Bergen, M. S. 1996. Identification of bacteria for biological control of Botrytis cinerea on petunia using a petal disk assay. Plant Dis. 80:1029-1033 https://doi.org/10.1094/PD-80-1029
- Harman, G. E., Latorre, B., Agosin, E., San Martin, R., Riegel, D. G., Nielsen, P. A., Tronsmo, A. and Pearson, R. C. 1996. Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biological Control 7:259-266 https://doi.org/10.1006/bcon.1996.0092
- Hammer, P. E., Evensen, K. B. and Janisiewicz, W. J. 1993. Postharvest control of Botrytis cinerea on cut rose flowers with pyrrolnitrin. PIant Dis. 77:283-286 https://doi.org/10.1094/PD-77-0283
- Janisiewicz, W. J. and Poitman, J. 1988. Biological control of blue mold and gray mold apple and pear with Pseudomonas cepacia. Phytopathology 78:1697-1700 https://doi.org/10.1094/Phyto-78-1697
- Johnson, K. B., Sawyer, T. L. and Powelson, M. L. 1994. Frequency benzimidazole- and dicarboximide-resistant strains of Botrytis cinerea in western oregon small fruit and snap bean plantings. Plant Dis. 78:572-577. https://doi.org/10.1094/PD-78-0572
- Katsumi, A., Keido, K. and Tomomasa, M. 1981a. Role of conidial fusion in infection by Botrytis cinerea on cucumber leaves. Ann. Phytopath. Soc. Japan 47:15-23 https://doi.org/10.3186/jjphytopath.47.15
- Katsumi, A., Yumiko, K., Yasuhide, M., Tadakazu, W., Keido, K. and Tomomasa, M. 1981b. Morphological studies on infection process of cucumber leaves by conidia of Botrytis cinerea stimulated with various purine-related compounds. Ann. Phytopath. Soc. Japan 47:234-243 https://doi.org/10.3186/jjphytopath.47.234
- Katsumi, A., Yasumasa, T, Hajime, S. and Satoshi, 0. 1987a. Stimulative effect of potassium phosphate on infection of cucumber leaves by conidia of Botrytis cinerea. Ann. Phytopath. Soc. Japan 53:175-181 https://doi.org/10.3186/jjphytopath.53.175
- Katsumi, A., Makoto, U., Tatsuyuki, I. and Satoshi, O. 1987b. Multicellular appressoria and terminal sclerotia formed by Botrytis cinerea. in infection process. Ann. Phytopath. Soc. Japan 53:45-52 https://doi.org/10.3186/jjphytopath.53.45
-
$K\ddot{o}hl,$ J., Gerlagh, M., De Haas, B. H. and Krijger, M. C. 1998.Biological control of Botrytis cinerea in cyclamen with Ulo-cladium atrum and Gliocladium roseum under commercialgrowing conditions. Phytopatholoey 88:568-575 https://doi.org/10.1094/PHYTO.1998.88.6.568 - Kim, B. S. 1997. Fungicide resistance and physiological and eco-logical diversity of Botrytis cinerea. Ph.D. thesis, Seoul Nat'lUniv. Suwon, Korea
- Kim, B. S., Park, E. W., Park, J. H., Roh, S. H. and Cho, K. Y.1996. Induction of prochloraz-resistant isolates of Botrytiscinerea in vitro and their biological properties. Korean J. PlantPathol. 12:226-230
- Kim, B. S., Park, E. W., Roh, S. H. and Cho, K. Y. 1997. Physio-logical diversity between morphological phenotypes of Botry-tis cinerea. Korean J. Mycology 25:320-329
- Kim, K. C. 1999. A theory of disease diagnoses and control for Cucurbitaceae crop. Chonnam National University Press. 702 p.
- Ministry of Science & Technology. 1992. Development of newbio- fungicide for control of gray mold rot on strawberry. 91 p.
- Lebbadi, M., Galvez, A., Maqueda, M., Martinez-Bueno, M. and Valdivia, E. 1994. A narrow spectrum peptide andbiotic fromBacillus licheniformis M-4. Bacteriolosy 77:49-53
- Moon, B. J., Roh, S. H., Son, Y. J., Kang. H. S., Lee, J. R, Kim, B.S. and Chung, D. S. 1998. Occurrence of gray mold rot ofperilla caused by Botrytis cinerea. Korean J. Plant Pathol. 14:467-472
- Moon, B. J. 1999. Development for quality, high yield productionand labor saving culture of leaf perilla around Nakdong River.Occurrence, isolation and identification of several diseases ofperilla and biological control by antagonistic bactena. Ministry of Agriculture and Forestry - Research Transactions. 277 p.
- Nari, M., Guizzardi, M. and Pratella, G. C. 1996. Biological con-ol of gray mold in pears by antagonistic bacteria. BiologicalControl 7:30-37
- Noboru, S. and Yoshihachi, W. 1985. Comparison of infectionprocess of Botrytis cinerea on cucumber cotyledon and Straw-berry petal. Ann. phytopath. Soc. Japan 51:501-505 https://doi.org/10.3186/jjphytopath.51.501
- Korean Agricultural Chemical Industrial Association. 1997. Astatute book to be connected with chemicals. 343 p.
- Korean Aghcultural Chemical Industrial Association, 2001. Astatute book to be connected with chemicals. 69 p.
- Raposo, R., Colgan, R., Delcan, J. and Melgarejo, P. 1995. Appli-cation of an automated quantitative method to determine fun-gicide resistance in Botrytis cinerea. Plant Dis. 79:294-296 https://doi.org/10.1094/PD-79-0294
- Sutton, J. C. and Peng, G. 1993. Biocontrol of Botrytis cinerea instrawberry leaves. Phytopathology 83:615-621 https://doi.org/10.1094/Phyto-83-615
- Yu, H. and Sutton, J. C. 1997. Effectiveness of bumblebees andhoneybees for delivering inoculum of Gliodadium roseum toraspberry flowers to control Botrytis cinerea. Biological Con-trol 10:113-122 https://doi.org/10.1006/bcon.1997.0562
- Zimand, G., Elad, Y. and Chet, I. 1996. Effect of Trichodermaharzianum on Botrytis cinerea pathogenicity. Phytopathology86:1255-1260 https://doi.org/10.1094/Phyto-86-1255
Cited by
- Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea vol.37, pp.3, 2006, https://doi.org/10.1016/j.biocontrol.2006.01.001
- Comparative efficacy of thermophilic bacterium,Bacillus licheniformis(NR1005) and antagonistic fungi,Trichoderma harzianumto controlPythium aphanidermatum-induced damping off in chilli (Capsicum annuumL.) vol.44, pp.11, 2011, https://doi.org/10.1080/03235401003755262
- Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit vol.27, pp.3, 2011, https://doi.org/10.5423/PPJ.2011.27.3.257
- Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries vol.58, pp.4, 2013, https://doi.org/10.1007/s10526-012-9503-x