DOI QR코드

DOI QR Code

Effect of trichostatin A on NF-κB DNA binding activity and myogenesis in C2Cl2 skeletal muscle Precursor cell

C2C12 근육아세포에서 trichostatin A에 의한 NF-κB DNA 결합 활성과 근육발생에 미치는 영향

  • 임운기 (부산대학교 자연과학대학 분자생물학과) ;
  • 김경창 (부산대학교 자연과학대학 분자생물학과) ;
  • 신혜자 (부산대학교 자연과학대학 분자생물학과)
  • Published : 2002.02.01

Abstract

The differentiation of skeletal muscle precursor cells in culture is marked by the transcriptional activation of muscle-specific genes and the morphological differentiation of myoblast into multinucleate myotube. In this study, we examined the effect of TSA (Trichostatin A) on WF-kB DNA binding activity and muscle cell fusion in the process of myogenesis. Under TSA treatment, C2C12 myoblast could not fuse to myotube and its NF-kB DNA binding activity was also blocked. To investigate whether these phenomenons were affected by TSA in direct or not, differentiation media (DM) used to differentiate cells without TSA was concentrated and added to C2C12 myoblast with TSA simultaneously. C2C12 myoblast was fused to myotube and NF-kB DNA binding activity was recovered. These results suggest that TSA affects on the differentiation of myoblast, perhaps through several factors, by inhibiting myoblst fusion and blocking NF-kB DNA binding activity.

골격근 세포의 분화는 근육특이 유전자들의 전사적 활성과 근육아세포에서 근육소관으로의 형태적 분화로 특징지어진다. 본 연구에서는 TSA가 근육형성의 일련의 과정에서 NF-kB DNA 결합 활성과 융합에 미치는 영향을 조사하였다. 대조군과 비교해서 TSA가 처리된 C2C12 myoblast는 융합하여 근육소관을 형성할 수 없었으며 NF-kB DNA 결합 활성은 억제되었다. 이런 현상들이 TSA에 의한 직접적인 것인지 알아보기 위해서 TSA가 처리되지 않고 분화를 유도하기 위해서 사용된 배지를 농축하여 C2C12 myoblast에 TSA와 함께 동시에 처리하였다. 그 결과 세포는 융합하여 근육소관을 형성하였으며 NF-kB DNA 결합 활성이 회복되었다. 이러한 결과는 TSA가 아마도 여러 관련 인자들을 통해 myoblast의 융합과 NF-kB DNA 결합 활성을 억제함으로 근육형성과정에 영향을 미침을 시사한다.

Keywords

References

  1. Chromatin and chromosome structure Post synthetic modifications of histone;a mechanism for the control of chromosome structure by the modulation of histones-DNA interactions Allfrey, V. G.;Li, H. J.;Eckhardt, R. A.(eds.)
  2. Cell v.87 NF-Kappa B;ten Years after Baeuerle, P. A;D. Baltimore https://doi.org/10.1016/S0092-8674(00)81318-5
  3. Annu. Rev. Immunol. v.14 The NF-Kappa B and I Kappa B proteins;new discoveries and insights Baldwin, A. S. Jr. https://doi.org/10.1146/annurev.immunol.14.1.649
  4. Nature v.388 A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. DiDonato, J. A.;M. Hayakawa;D. M. Rothwarf;E. Zandi;M. Karin https://doi.org/10.1038/41493
  5. Immunity v.3 Mechanistic aspects of NF-kappa B regulation;the emerging role of phosphorylation and proteolysis Finco, T. S.;A. S. Baldwin https://doi.org/10.1016/1074-7613(95)90112-4
  6. Mol. Cell Biol. v.19 NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1 Guttridge, D. C.;C. Albanese;J. Y. Reuther;R. G. Pestell;A. S, Jr. Baldwin
  7. J. Biol. Chem. v.274 Insulin-like growth factor-Ⅱ, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway Kaliman, P.;J. Canicio;X. Testar;M. Palacin;A. Zorzano https://doi.org/10.1074/jbc.274.25.17437
  8. Oncogene v.4 Inhibition of myogenic differentiation by the H-ras oncogene is associated with the down regulation of the MyoD1 gene Konieczny, S. F.;B. L. Drobes;S. L. Menke;E. J. Taparowsky
  9. Cell v.58 Transformation by activated ras of fos prevents myogenesis by inhibiting expression of MyoD1. Lassar, A. B.;M. J. Thayer;R. W. Overell;H. Weintraub https://doi.org/10.1016/0092-8674(89)90101-3
  10. J. Biol. Chem. v.275 Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor Lee S. K.;J. H. Kim;Y. C. Lee;J. Cheong;J. W. Lee https://doi.org/10.1074/jbc.275.17.12470
  11. Biochem. Biophys. Res. Commun. v.229 Dwon-regulation of transcription factors AP-1, Sp-1, and NF-kappa B precedes myocyte differentiation Lehtinen, S. K;P. Rahkila;M. Helenius;P. Korhonen;A. Salminen https://doi.org/10.1006/bbrc.1996.1754
  12. J. Natl. Cancer. Inst. v.92 Histone deacetylase inhibitors;inducers of differentiation or apoptosis of transformed cells Marks, P. V.;v. M. Richon;R. A. Rifkind https://doi.org/10.1093/jnci/92.15.1210
  13. Nature v.408 Signal-dependent ruclear export of a histone deacetylase regulates muscle differentiation McKinsey, T. A.;C. L. Zhang;J. Lu;E. N. Olson https://doi.org/10.1038/35040593
  14. Proc. Natl. Acad. Sci. v.97 Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5 Mckinsey, T. A.;C. L. Zhang;E. N. Olson https://doi.org/10.1073/pnas.260501497
  15. Genes Dev. v.9 Rel/NF-B/IB family;intimate tales of association and dissociation Verma, I. M.;J. K. Stevenson;E. M. Schwartz;D. Van Antwerp;S. Miyamoto https://doi.org/10.1101/gad.9.22.2723
  16. Biochem. J. v.228 The fusion of myoblasts Wakelam, M. J.
  17. Dev. dynamics v.218 Histone acetylation is checkpoint in FGF-stimulated mesoderm induction Xu, R. H.;Y. Peng;J. Fan;D. H. Yan;S. Yamagoe;G. Princler;D. Sredni;K. Ozato;H. F. Kung https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1024>3.0.CO;2-H
  18. Proc. Natl. Acad. Sci. v.98 The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis Zhang, C. L.;T. A. McKinsey;E. N. Olson https://doi.org/10.1073/pnas.131198498