실관 생물반응기대 고정화된 Enterococcus faecalis RKY1에 의한 숙신산 생산특성

  • 위영중 (전남대학교 화학공학부 생물산업기술연구소) ;
  • 윤종선 (전남대학교 화학공학부 생물산업기술연구소) ;
  • 류화원 (전남대학교 화학공학부 생물산업기술연구소)
  • 발행 : 2002.04.01

초록

푸마르산으로부터 숙신산 생물전환을 위하여 E. faecalis RKY1을 HFBR에 친정화하여 연속생산 공정에 대한 가능성을 모색하였다. E. faecalis RKY1은 실관의 spongy 부분에 효과적으로 고정화되었으며, transverse mode로 HFBR 조업시 실관가닥이 50개 및 200개일 경우 거의 비슷한 경향을 나타냈다. 또한 배지의 공급속도를 0.25, 0.5, 1.0 mL/min로 증가시키면서 조업한 결과, 정상상태에 도달하는 시간이 각각 24, 12, 9시간으로서 유속이 증가할수록 정상상태에 도달하는 시간은 단축되었지만, 반응기 내의 기질 및 생성물 분포는 그 변화가 심하였다. 실관 생물반응기를 이용하여 숙신산 생물 전환시 배지의 공금 유속이 증가할수록 숙신산 생산성은 증가하였지만 전환수율이 감소하여 미반응 푸마르산은 증가하였다. 최대 숙신산 생산성 및 이 때의 수율은 푸마르산염 농도 80 g/L 및 배지 공금 유속 2.0 mL/min일 때 17.1 g/L ·hr 및 0.54 g/g이었으며, 최적 숙신산 생산성 및 이 때의 수율은 푸마르산염 농도 50 g/L 및 배지 공급 유속 1.0 mL/min일때 9.0 g/L · 및 0.90 g/g으로서 회분식 생물전환의 경우보다 더 우수하였다.

Enterococcus faecalis RKY1 cells were immobilized in an asymmetric hollow fiber bioreactor for application to the continuous production of succinic acid. The media was fed into shell-side of the module using a peristaltic pump, and the products were collected through lumen-side outlet. The number of hollow fibers within the module did not affect the bioreactor efficiency in the transverse operated hollow fiber bioreactor. The steady state at the outlet of hollow fiber bioreactor was reached after 24 hr cultivation at flow rate of 0.25 mL/mim, 12 hr at 0.5 L/min, and 9 hr at 1.0 mL/mm, respectively. The succinate and fumarate concentrations within the hollow fiber bioreactor, however, were as changeful as increasing the flow rate. During continuous operation with the flow rates between 0.5 and 2.0 mL, the productivity of succinate was 8.0-10.9 g/L $.$ hr at 30 g/L fumarate, 4.9-14.9 g/L hr at 50 g/L fumarate, and 7.2-17.1 g/L hr at 80 galL fumarate, respectively.

키워드

참고문헌

  1. Bacterial Metabolism(2nd ed.) Gottschalk, G.
  2. Bioprocess Engineering, The First Generation Ghose, T. K.
  3. Kor. J. Appl. Microbiol. Biotechnol. v.26 no.6 Isolation and Characterization of the Enterococcus sp. RKY1 for Biosynthesis of Succinic Acid Ryu, H. W.;J. S. Yun;K. H. Kang
  4. Biotechnol. Prog. v.15 Catalytic Upgrading of Fermentation-Derived Organic Acids Varadarajan, S.;D. J. Miller https://doi.org/10.1021/bp9900965
  5. Biologically Produced Succinic Acid A New Route to Chemical Intermediates, Alternative Feedstocks Program Davison, B.;G. Kulesa
  6. Appl. Microbiol. Biotechnol. v.51 Biotechnology of Succinic Acid Production and Markets for Derived Industrial Zeikus, J. G.;M. K. Jain;P. Elankovan https://doi.org/10.1007/s002530051431
  7. Appl. Microbiol. Biotechnol. v.52 Chemicals from Biotechnology;Malecular Plant Genetics Will Change the Chemical and the Fermentation Industry Wilke, D. https://doi.org/10.1007/s002530051500
  8. U. S. Pat., No. 5,143,833 Process for the Production of Succinic Acid by Anaerobic Fermentation Datta, R.
  9. Appl. Biochem. Biotechnol. v.63/65 Production of Succinic Acid by Anaerobiospirillum succiniciproducens Nghiem, N. P.;B. H. Davison;B. E. Suttle;G. R. Richardson https://doi.org/10.1007/BF02920454
  10. Proc. Biochem. v.35 Effect of Medium Components on the Growth of Anaerobiospirillum succiniciproducens and Succinic Acid Production Lee, P. C.;W. G. Lee;S. Y. Lee;H. N. Chang https://doi.org/10.1016/S0032-9592(99)00031-X
  11. J. Microbiol. Biotechnol. v.10 no.1 Effect of Culture Conditions on the Production of Succinate by Enterococcus faecalis RKY1 Kang, K. H.;J. S. Yun;H. W. Ryu
  12. Int. J. Syst. Bacteriol. v.49 Actinobacillus succinogenes sp. nov.;a Novel Succinic Acid-Producing Strain from Bovine Rumen Guettler, M. V.;D. Rumler;M. K. Jain https://doi.org/10.1099/00207713-49-1-207
  13. Appl. Biochem. Biotechnol. v.70/72 Bioconversion of Fumaric Acid to Succinic Acid by Recombinant E. coli Wang, X.;C. S. Gong;G. T. Tsao https://doi.org/10.1007/BF02920202
  14. Appl. Biochem. Biotechnol. v.77/79 Bioconversion of Fumaric to Succinate Using Glycerol as a Carbon Source Ryu, H. W.;K. H. Kang;J. S. Yun
  15. J. Microbiol. Meth. v.8 The Uses and Future Potential of Microbial Hollow-Fibre Biorectors Bunch, A. W. https://doi.org/10.1016/0167-7012(88)90042-5
  16. Trends Biotechnol. v.2 no.1 Hollow Fiber Enzyme Reactors Kitano, H.;N. Ise https://doi.org/10.1016/0167-7799(84)90045-3
  17. Appl. Microbiol. Biotechnol. v.20 Ethanol Production in a Hollow Fiber Bioreactor Using Saccharomyces cerevisiae Mehaia, M. A.;M. Cheryan
  18. Enzyme Microb. Technol. v.18 The Physiological state of an Ethylogenic Escherichia coli Immobilized in Hollow-Fiber Bioreacters Lloyd, J. R.;A. W. Blanch https://doi.org/10.1016/0141-0229(95)00077-1
  19. Biotechnol. Bioeng. v.36 Mammalian Cell and Protein Distributions in Ultrafiltration Hollow Fiber Bioreactors Piret, J. M.;C. L. Cooney https://doi.org/10.1002/bit.260360905
  20. Biotechnol. Bioeng. v.27 Dual Aerobic Hollow Fiber Bioreactor for Cultivation of Streptomyces aureofaciens Robertson, C. R.;I. H. Kim https://doi.org/10.1002/bit.260270712
  21. Biotechnol. Bioeng. v.32 Aerobic Fungal Cell Immobilization in a Dual Hollow Fiber Bioreactor;Continuous Production of Citric Acid Chung, B. H.;H. N. Chang https://doi.org/10.1002/bit.260320210
  22. Trends Biotechnol. v.18 Biocatalytic Membrane Reactors;Applications and Perspectives Giorno, L.;E. Drioli https://doi.org/10.1016/S0167-7799(00)01472-4
  23. Biotechnol. Lett. v.4 no.8 Lactic Acid Production by Lactobacillus delbreuckii in a Hollow Fiber Fermenter VickRoy, T. B.;H. W. Blanch;C. R. Wilke https://doi.org/10.1007/BF00131569
  24. Biotechnol. Bioeng. v.28 Operation and Pressure Distribution of Immobilized Cell Hollow Fiber Bioreactors Tharakan, J. P.;P. C. Chau https://doi.org/10.1002/bit.260280717
  25. Enzyme Microb. Technol v.11 Monitoring of Microbial Growth in a Hollow-Fiber Reactor Using an Electronic Pressure Sensor Linton, E. A.;G. Hogton;C. J. Knowles;A. W. Bunch https://doi.org/10.1016/0141-0229(89)90043-4