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Influential Points in GLMs via Backwards Stepping

Kwang Mo Jeongl), Hae Young Oh2)

Abstract

When assessing goodness-of-fit of a model, a small subset of deviating
observations can give rise to a significant lack of fit. It is therefore important to
identify such observations and to assess their effects on various aspects of analysis.
A Cook’s distance measure is usually used to detect influential observation. But it
sometimes 1s not fully effective in identifying truly influential set of observations
because there may exist masking or swamping effects. In this paper we confine our
attention to influential subset in GLMs such as logistic regression models and
loglinear models.

We modify a backwards stepping algorithm, which was originally suggested for
detecting outlying cells in contingency tables, to detect influential observations in
GLMs. The algorithm consists of two steps, the identification step and the testing
step. In identification step we identify influential observations based on influencial
measures such as Cook’'s distances. On the other hand in testing step we test the
subset of identified observations to be significant or not. Finally we explain the
proposed method through two types of dataset related to logistic regression model and
loglinear model, respectively.

1. INTRODUCTION

When assessing goodness—of-fit of a model, a small subset of deviating observations can
give rise to a significant lack of fit. It is therefore important to identify such observations and
to assess their effects on various aspects of analysis. Many statisticians have been interested
in identifying outliers which are usually identified via residuals. On the other hand the
observations which greatly affect parameter estimates in regression models are called
influential points, as was firstly discussed by Cook(1977). A Cook's distance measure is
usually used to detect influential observation. But it sometimes is not fully effective in
identifying truly influential set of observations because there may exist masking or swamping
effects. Influential points may be masked by other points, or any points which are in fact not
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influential may be regarded as influential because of swamping effect. In both cases we are
confronted with difficulty in detecting truly influential points. Many researchers, for example,
Hoaglin and Welsch(1978), Belsley, Kuh and Welsch (1980), Cook and Weisberg(1980),
Atkinson(1981), and Cook and Weisberg(1982) studied this problem. We omit detailed
discussions in linear models.

For general discussions on generalized linear model (GLM) we refer to, in particular,
McCullagh and Nelder(1983) and Agresti(1990), and here we only confine our attention to
influential subset in GLMs. Two types of the most popular GLMs are the logistic regression
model and the loglinear model. In logistic regression model Pregibon(1981) discussed detecting
influential points using perturbation. On the other hand Simonoff(1988) suggested a method,
which is known as backwards stepping procedure, to detect outliers in contingency tables. The
backwards stepping algorithm of Simonoff(1988) consists of two steps, the identification step
and the testing step. In this paper we slightly modify the algorithm to be suitable for
detection of influential points and hence we introduce appropriate measures to identify
influential points in the identification step. Chi-squared test statistics can be used as deviance
measures between successive steps in the testing step. The likelihood ratio test (LRT)
statistic and the Pearson statistic are popular ones. In Section 2 we briefly overview GLMs
with some discussions on the estimation of parameters. Diagnostic measures in GLMs such as
influential measures, residuals, and goodness-of-fit statistics will be discussed in Section 3. In
Section 4 we introduce a modified backwards stepping algorithm for detecting influential
observations. Finally we explain the proposed method through two types of dataset related to
logistic regression model and loglinear model, respectively. The calculations in this paper were
performed via Splus software programming.

2. Generalized Linear Model

First we briefly review GLM and its estimation techniques. Let X, -, X, be p explanatory

variables, and let y be a response variable with mean E(y)=gz. We assume a relationship

between #7(y), a function of g, and a linear predictor of explanatory variables {x;,--,x,} of

the form
() =By +Brx;+ -+ Byx,. 2.1

This type of linear model is called a GLM in the sense that the relationship is linear in
terms of #7(x). The function #7(x) is called a link function and the right hand side of (2.1)
denotes a systematic component of GLM. To simplify the notation we denote the linear
predictor in (2.1) as
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XB:BO +le1 +-"+B,xl,,

where x is a vector (l,x,-,%,) of explanatory variables and B=(B .81, 8 .
Logistic regression models and loglinear models are typical ones of GLMs.

As a special case of GLM we first consider a logistic model for binary responses taking
values of one and zero with respective probabilities # and 1-—x. Hereafter in logistic

regression model we use the notation x instead of #. The link function of the form
logit(n) = x B (2.2)

is called a logit link with an abbreviated notation logit(x)=log{(z/(1—x)). On the other
hand a loglinear model of the form

log(u)=x B (2.3

is defined if the response variable is distributed as Poisson with mean g. The link function
of (2.3) is called a log link. We may consider various kinds of GLM according to link
functions. We refer to McCullagh and Nelder(1983) for more detailed discussions on GLMs.

Next we consider the estimation of parameters based on likelihood function. Let y be a
response with probability function

Ay =explyn—a(n+b()}. (2.4)

We note that 7= logit(n), a(p)=log(1+¢e”) and & y)=0 for a binary response variable. On
the other hand if v is a Poisson variable with mean g, then 7=log(x) and a(7) =exp(y)
with &(y) =—log(y!). Hence the log-likelihood function can be written as

(X By) = 2:{yix;:B— alx;8)+ &y}, (2.5)

where X is a design matrix having =x; as its 7th column. The maximum likelihood

estimates(MLE) are found by solving the likelihood equation given by dXX 8 y)/d8=10. But
the MLEs of GLM cannot be obtained in explicit form in general except some simple models.
When there does not exist direct estimates we use the Newton-Raphson iterative algorithm to
find MLEs from the likelihood equations. Detailed iterative steps are routine and we omit them
here.

After the initial value B8‘¥ is assigned we can express B, the value at fth iteration, in
the following recursive form
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BUTD = BU L[ XTWOX]I'X(y—72©). (26)

~ ) . . . .
We note that the Wl is an nx#n diagonal matrix with diagonal elements w;”;

w; P =71 -7) for a logistic model, and ;" = ;Y for a loglinear model. The MLE B
is obtained when a certain convergence criterion is attained and we also obtain the covariance

of B, given by [XTW X]7!, where W is a diagonal matrix with estimated values of w;?

at the final stage of iteration. The matrix XTW X is called the Fisher information matrix.
It sometimes 1s useful to view the iterative process outlined above in the sense of
iteratively reweighted least squares estimation (IRWLSE). We briefly review the discussion on

IRWLSE by Pregibon(1981). Let a pseudo-observation vector z‘? be defined by
Z(L‘)= XBU) + W(t)—l(y_ ’l\‘(t)).
Then BY"Y in (2.6) can be rewritten in the form of IRWLSE as

B('+l) — (XT/W (t)X)—le/W (I)Z (l‘).

3. Diagnostic Measures
3.1 Influence Measures

Residuals, which are differences between observations and estimated values in usual sense,
are most commonly used for identifying outliers, but we are not certain whether the residuals
can also be effective for detecting influential observations. Influential observations are the ones

which greatly affect the estimate B. In linear regression models diagonal elements of hat
matrix defined by

H= X[ XTx]'xT

is a useful measure for leverage points. We omit here detailed discussions on the properties
of hat matrix. An analogue of hat matrix in GLMs can be given in the form

1 1
H= W X[XTWX]'X” W°. 3.1)
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Diagonal elements of H, denoted by #%;, are useful in detecting high leverage points.
Influencial points tend to have large values of 4; but large residuals are seldom associated
with high leverage points, whereas small residuals are typically of the opposite character.

Even though the quantities of residuals and diagonal elements of hat matrix are useful for
detecting extreme points, but not for assessing their impact on parameter estimates or fitted
values. Let ?(,) be an MLE with the ith observation deleted. Cook(1977) firstly proposed a

statistic, which is the so called Cook’s distance, of the form

L (B=B)"X"X(B-Bw)
: (p+1) 9

(32)

as an influence measure for the ith observation, where ¢ is an estimate of dispersion
parameter. The statistic ¢; measures an effect on the estimate B when the ith observation is

deleted. As discussed in Pregibon(1981) an analogue of Cook’s statistic in GLMs can be
written in a generalized form

.. (IB—/B(Q)TXTWX(,B—TB(Z))
: (p+1) 9

(3.3)

In (3.3) the one-step approximation of 3’(0 is usually taken to alleviate computational
burden.

Hereafter we follow the expressions given in Chambers and Hastie(1993) to represent

Cook’s distances in terms of norm. If we let 7= X B and 7, = X By the Cook’s distance

can be written using a norm weighted by W as

=50l
“T T+ o0

Possibly a more useful diagnostic measure is the Cook’s distance confined to a subset of
parameters of interest, in particular those subset belonging to an individual term in the model.
It shows why some of the observations have large Cook’s distances for both of the quadratic
and linear terms. This type of Cook’s distance measure, which is usually called an index
influence measure for each parameter, can be expressed as

i F = Fill?

- (35)
gl w i Var( }jz’)

)
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where ;‘,: X ,-79j, with X; denoting a subset of model matrix corresponding to a subset of
parameters. The corresponding estimate 73,» is defined in a similar way. The estimate

f =X ,78,(,) is an approximation of }j with the ith observation omitted. The equation

(3.5) can be applied to each single parameter of the models in (2.2) and (2.3).
3.2 Goodness-of-Fit Statistics and Residuals
After we obtain fitted values under the assumed model we are to assess goodness-of-fit of

a model. The widely used statistics for testing the assumed model are the Pearson statistic
and the LRT statistic. The Pearson statistic is of the form

Y2
xto 3 iz p) (3.6)
=1 K
and the LRT is
G=2 gi v, log(%), 37)

where 1, denotes the predicted value of y; under the assumed model. When the assumed
model is true these two statistics are known to have the same asymptotic chi-square
distribution with an appropriate degree of freedom.

A few observations, which are the so called outliers, can cause a significant lack of fit
when we fit a model. Many statisticians have been interested in identifying outliers in various
ways. Outliers can usually be identified via residuals. We briefly review three types of
residuals in relation to Cook’s distance measure. The Pearson residual which is defined by

P _ Vi — Ky (3.8)

T Var(a)

is directly related to the Pearson statistic in the sense that the residual sum of squares is
equal to the Pearson statistic of (3.6). The Cook’s distance c¢; given in (3.3) may be

represented in terms of Pearson residual and leverage value as follows

(7’1' P)zhz'

TS TS (3.9)

C;
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where £%; is a diagonal element of hat matrix given in (3.1). The adjusted residual can be

represented as

P
A 7y

A=

On the other hand the deviance residual is defined as

‘ 1
7" = V2sign(y; — 1)y, log(%) — vt ol (3.10)

where sign( 8) is 1 if ¢ is positive and -1 otherwise. We also note that the sum of squares

of deviance residuals is equal to G® given in (3.7).
4. Backwards Stepping for Influential Observations

A backwards stepping algorithm, originally suggested by Simonoff(1988) to detect outlying
cells in contingency tables, is based on residuals and goodness-of-fit statistics. We modify the
algorithm so that it can be applied to detect influential observations in GLMs. The algorithm
consists of two steps, the identification step and the testing step. In identification step we
identify influential observations based on the influencial measure of Cook’s distances. On the
other hand in testing step we test the subset of influential observations detected in
identification step to be significant or not. The drop in a goodness-of-fit statistic with the
observation of interest deleted can be used as a test statistic in testing steps.

First of all we temporarily determine the number of influential cbservations, hereafter
denoted by K; which will be used in identifying observations until K; suspected

observations are detected. Determining K, is a little more difficult problem. We suggest a
method of determining K, from a scree plot, which is usually used in factor analysis to find

the number of common factors by plotting eigenvalues of sample correlation matrix against
the order of their magnitudes. In a similar way we plot Cook’s distances in the order of their
magnitudes and choose the value of K, at the number in which the relative magnitudes of

Cook's distances decrease steeply.
Identification Step

Step 1. Set the identification step number i equal to O.
Step 2. Fit an assumed model to the whole dataset of observations.
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Step 3. Identify the most influential observation based on Cook’s distance measure c;

defined in (3.3).
Step 4. Repeat until i = K;, then we stop the identification step.

After a subset of K, observations is temporarily detected to be influential we nextly

perform testing steps to guarantee the significance of identified influential observations. As a
test statistic we take the drop in LRT statistic after the observation of interest is deleted.
Given the overall significance level o we choose a,= /K, as a common significance level

for each testing step. This fact stems from the Bonferroni bound, which is known to be very
conservative in controlling Type 1 error of test. As pointed out by Rosner(1975) this strategy
matches fairly well with the anti-conservativeness of backwards stepping algorithm.

Testing Step

Step 1. Set the testing step number ¢ equal to K.
Step 2. Construct a test statistic 7, at the ith step, to be the change in

G? after the observation of interest is deleted.

Table 4.1. Finney’s Data on vaso-constriction

Volume Rate  Response’| Volume Rate  Response
37 0.825 1 0.4 2 0
35 1.09 1 0.95 1.36 0
1.25 25 1 1.35 1.35 0
0.75 1.5 1 15 1.36 0
0.8 3.2 1 1.6 1.78 1
0.7 35 1 0.6 15 0
06 0.75 0 1.8 15 1
1.1 1.7 0 0.95 1.9 0
0.9 0.75 0 1.9 0.95 1
09 0.45 0 16 04 0
08 0.57 0 2.7 0.75 1
0.55 275 0 2.35 0.30 0
06 30 0 1.1 1.83 0
14 2.33 1 1.1 2.2 1
0.75 3.75 1 1.2 2.0 1
2.3 1.64 1 0.8 3.33 1
3.2 16 1 0.95 1.9 0
0.85 1.415 1 0.75 19 0
1.7 1.06 0 1.3 1.625 1
1.8 1.8 1

* binary response indicates the occurrence (1) or nonoccurrence (0)

Step 3. Compare 7; with an appropriate critical value of chi-squared statistic with

significance ay= a/ Kj.
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Step 4. If T, is not significant and ¢ > 1, decrease 7 to 7 - 1 and go to Step 2, otherwise
no values are significant and hence we have no influential observations.

In testing Step 2 an alternative choice of test statistic is possible by taking X? instead of

G*. But we prefer G? statistic in the respect that G? can be partitioned into chi-squared

components.

Example 4.1. To explain the modified backwards stepping algorithm adapted to detect
influential observations in logistic regression model we introduce an example from
Finney(1947), which had also been explained in Pregibon(1981). The data listed in Table 4.1
were obtained in a controlled study on the effect of the rate and volume of air inspired on a
transient vaso-constriction in the skin of the digits.

The nature of the measurements process was such that only the occurrence or
nonoccurrence of vaso-constriction could be reliably measured. Three subjects were involved
in the study: the first 9 responses, the second contributed 8 responses, and the third
contributed 22 responses.

We assume a logistic model of the form

logit(7) = B+ B, log( Rate) + £, log( Volume),

where a logarithmic transformation is taken on each explanatory variable. The estimated

parameters are
Bo=—2.924(1.246), B,=4.631(1.731), B,=5.220(1.798)

with the estimated standard errors in parentheses. The deviance for the fit is 29.26 on 36
degrees of freedom (df) with P-value 0.220 from the asymptotic chi-squared distribution, and
hence there is no gross inadequacies of the assumed model. Influence measures for the whole
dataset are listed in Table 4.2. We may temporarily choose K;=2 observations from the
scree plot of Cook’s distances as shown in Figure 4.1. The 4tk observation has the largest
c; value and the 18# observation has the next largest ¢; value.

After the 4th observation is deleted we fit the same logistic model for the remaining 38
observations. The G value for this subset is 22.42 with 35 df as shown in Table 4.4. Cook's
distances in identification steps are given in Table 4.3. As was expected the 18tk observation

has the largest c¢; value among the remaining 38 observations after the 4#: observation is

omitted.
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Table 4.2. Influential measures for the data of Table 4.1.

Cl'j
Obs C; h; ri A

Bo B B

1 0.002 0.094 0.231 0.000 0.000 0.003
2 0.000 0.043 0.136 0.000  0.000 0.000
3 0.002 0.059 0.295 0.002 0.004 0.003
4 0.410 0.083 3.691 1.098  0.809 0.986
5 0.013 0.111 0.553 0.005 0.017 0.003
6 0.024 0.146 0.650 0.006 0.025 0.000
7 0.000 0.007 -0.030 0.000  0.000 0.000
8 0.021 0.055 -1.045 0.020 0.003 0.003
9 0.000 0.031 -0.090 0.000  0.000 0.000
10 0.000 0.007 -0.027 0.000 0.000 0.000
11 0.000 0.009 -0.034 0.000  0.000 0.000
12 0.017 0.149 -0.547 0.014 0.004 0.028
13 0.047 0.163 ~-0.849 0.011  0.000 0.034
14 0.001 0.053 0.258 0.002  0.003 0.003
15 0.010 0.126 0.456 0.007 0.017 0.003
16 0.000 0.040 0.157 0.000 0.001 0.000
17 0.000 0.017 0.069 0.000  0.000 0.000
18 0.311 0.090 3.066 0871 0635 0.677
19 0.061 0.125 -1.133 0.056 0.032 0.000
20 0.001 0.052 0.243 0.001 0.002 0.003
21 0.000 0.037 -0.105 0.000  0.000 0.000
22 0.007 0.096 -0.431 0.018 0.013 0.012
23 0.029 0.073 -1.056 0034 0.013 0.000
24 0.050 0.070 -1.412 0.014 0.001 0.012
25 0.002 0.058 0.341 0.002  0.003 0.005
26 0.000 0.052 -0.158 0.001  0.001 0.001
27 0.003 0.066 0.375 0.001 0.003 0.006
28 0.020 0.064 -0.926 0.020  0.003 0.010
29 0.062 0.159 0.992 0.048 0.031 0.002
30 0.000 0.045 -0.094 0.000  0.000 0.000
31 0.054 0.239 0.721 0.010 0.007 0.021
32 0.000 0.091 -0.136 0.001 0.002 0.000
33 0.027 0.051 -1.237 0.008  0.000 0.000
34 0.007 0.059 0.558 0.002 0.007 0.004
35 0.006 0.055 0.553 0.001 0.006 0.005
36 0.011 0.112 0.504 0.006 0.017 0.003
37 0.020 0.064 -0.926 0.020 0.003 0.010
38 0.009 0.098 -0.507 0.019 0.010 0.018
39 0.010 0.053 0.726 0.001  0.001 0.003

From Table 4.4 the G? value is 7.36 after these two observations are deleted. The upper
ay=a/Ky =0.05/2=0.025 percentile for the chi-square distribution with 1 df corresponds to

2 00s(1)=3.170. Hence the G® change of 1507 in the testing step is very
significant(P=0.000) compared to the critical value 3.170. Since the first step results in
significance we stop the testing procedure at this step and conclude that both 4t and 13
observations are influential under the assumed logistic model for Finney’s data. This fact
exactly coincides with that of Pregibon(1981).
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Figure 4.1 Scree plot of Cook’s distances for the data of Finney

Table 4.3. Cook’s distances in identification steps

obs steps obs steps

1st 2nd 1st 2nd
1 0.002 0.000 21 0.000 0.000
2 0.000 0.000 22 0.007 0.000
3 0.002 0.000 23 0.029 0.027
4 0.410 - 24 0.050 0.061
5 0.013 0.013 25 0.002 0.001
6 0.024 0.003 26 0.000 0.000
7 0.000 0.000 27 0.003 0.002
8 0.021 0.021 28 0.020 0.018
9 0.000 0.000 29 0.062 0.128

10 0.000 0.000 30 0.000 0.000

11 0.000 0.000 31 0.054 0.071
12 0.017 0.004 32 0.000 0.000
13 0.047 0.029 33 0.027 0.030
14 0.001 0.003 34 0.007 0.007
15 0.010 0.007 35 0.006 0.006
16 0.000 0.000 36 0.011 0.009
17 0.000 0.000 37 0.020 0.018
18 0.311 1.052 38 0.009 0.002
19 0.061 0.058 39 0.010 0.014
20 0.001 0.000
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Table 4.4. Testing steps for the data of Table 4.1.

step | identified ohservations G* G? changes df
1 | #4, #18 7.36 15.07 ° 34
2 | #4 22.42 7.23 35
3 - 29.26 - 36

* means the significance at «;=0.025

Example 4.2. We nextly illustrate the application of backwards stepping procedure to
loglinear models through an artificial dataset of Table 4.5, which was originally designed by
Simonoff(1988) to detect outlying cells using backwards stepping procedure. As shown in
Table 45 the counts in cells (1,2), (1,3) and (2,1) are much larger than those in other cells
which are approximately equal to twenty. So these cells are suspected to be outlying cells as
explained by Simonoff(1983). Here we are going to detect influencial cells under the
independence loglinear model. First we assume the independence loglinear model and find
influence measures such as Cook’s distances and index distances for each parameter as given
in Table 4.6. We temporarily determine K; = 4 from the scree plot of Cook’s distances as
shown in Figure 4.2. Firstly, the (1,1) cell is identified as suspected influential in the first step
for the whole dataset. Secondly we identify (2,1) cell as influential by fitting the assumed
model to the remaining 5x5—1 cells.

In this way we repeat the identification step until K, = 4 cells are identified. The identified
four cells are (1,1), (2,1), (1,5), (1,4) in the order of identification as shown in Table 4.7. We
note that these cells are different from the outlying cells (2,1), (1,3) and (1,2) identified using
deleted residuals in Simonoff(1988). Now we are going to test the significance of identified
influential cells using drops in G’ statistics. The significance level at each testing step of
Table 48 is taken to be a common value of o= a/K,= 0.05/4 = 0.0125, and hence the

critical value is x%gqs =6.25 with 1 df.

Table 45 Hypothetical data by Simonoff

cell 1 2 3 4 5

18 41 41 20 21
39 20 20 22 22
24 20 20 16 18
20 20 19 19 19
23 18 20 17 20

T CO DN =
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Table 4.6 Influence measures for the data of Table 4.5

C,'I

cell C; h,‘ 7’,‘A

Bo 8 B,
(1,1) 0.633 0418 -2.386 0.350  0.567 0.665
(1,2) 0.418 0412 1.980 0.240  0.357 0.436
(1,3) 0.399 0413 1.926 0240 0357 0.436
(1,4) 0.053 0378 0777 0049 0.039 0.065
(1,5) 0.067 0.386 -0.856 0056 0.052 0.080
(2,1) 0.471 0.393 2218 0336 0471 0.467
(2,2) 0.137 0387 -1.224 0.109 0.141 0.146
(2,3) 0.147 0.388 -1.262 0109 0.141 0.146
(2,4) 0.005 0.352 0272 0.007 0.005 0.007
(2,5) 0.000 0.360 -0.017 0.000  0.000 0.000
(3,1) 0.017 0.359 0.467 0018 0.020 0.015
(3,2) 0.003 0.351 -0.204 0.004 0.005 0.004
(3,3 0.004 0.353 -0.242 0.004  0.005 0.004
(3,4) 0.001 0314 -0132 0.001  0.000 0.001
(3,5) 0.000 0.323 0.096 0.001  0.000 0.001

0.009 0.010 0.007
(4,1) 0.009 0357 -0342
(4,2) 0.001 0.350 -0.158 0.003 0.003 0.002
(4,3) 0.012 0351 -0415 0013 0.014 0.011
(4,4) 0.025 0.313 0.650 0.037 0.026 0.027
(4,5) 0.009 0.322 0.379 0.013 0.010 0.009
(5,1) 0.005 0.359 0.253 0.004 0.004 0.003
(5,2) 0.030 0351 -0641 0.020 0.021 0.017
(5,3) 0.004 0353 -0.242 0006  0.007 0.005
(5,4) 0.000 0.314 0.113 0.001  0.000 0.000
(5,5) 0.020 0.027 0.021 0024 0.019 0.019
5 o~

5 10 15 20 25

index number

Figure 4.2 Scree plot of Cook’s distances for the data of Simonoff
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Table 47 Cook’s distances in identification steps

steps
1 2 3 4

(1,1) 0.633 - N -
(1,2) 0.418 0.314 0.349 0.242
(1,3) 0.399 0.290 0.322 0.211
(1,4) 0.063 0.270 0.300 0.831
(1,5) 0.067 0.329 0.365 -

(2,1 0.471 0.371 - -

(2,2) 0.137 0.120 0.064 0.045
(2,3) 0.147 0.130 0.072 0.053
(2,4) 0.005 0.020 0.091 0.146
(2,5) 0.000 0.003 0.044 0.003

(3,1) 0.017 0.005 0.026 0.031
(3,2) 0.003 0.000 0.003 0.000
(3,3) 0.004 0.000 0.004 0.000
3,4 0.001 0.000 0.000 0.000
(3,5 0.000 0.005 0.001 0.013

4,1) 0.009 0.135 0.049 0.059
(4,2) 0.001 0.000 0.001 0.000
4,3) 0.012 0.004 0.016 0.007
4,49 0.025 0.050 0.041 0.069
{4,5) 0.009 0.024 0.015 0.000

(5,1 0.005 0.023 0.003 0.004
(5,2) 0.030 0.019 0.041 0.029
(5,3) 0.004 0.000 0.004 0.000
(54) 0.000 0.006 0.001 0.007
(5,5) 0.020 0.045 0.034 0.004

cell

The value 5529 of G? changes is not significant compared to x%p o = 6.25 at testing
Step 1. This means that the cell (1,4) is omitted from the set of identified cells and we go to
the next step. This process is repeated until the set of remaining identified cells are
significant. Finally we conclude that (1,1) cell is the only one influential cell detected by
backwards stepping algorithm.

Table 4.8 Testing steps for the data of Table 4.5

step | identified cells G* G* changes df
1 (1,1)(2,1)(1,5)(1,4) 1.347 5.529 12
2 (1,D2,D1,5) 6.876 3.601 13
3 (1,1)(2,1) 10.477 3.542 14
4 1,1 14.019 10.659 * 15
5 - 24.678 - 16

* means the significance at ¢(=0.0125
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5. Conclusion and Future Research

In this paper we discussed a modified backwards stepping algorithm detecting influential
observations in GLMs such as logistic regression model and loglinear model. Backwards
stepping algorithm, which was originally suggested by Si‘monoff(1988) for the purpose of
detecting outlying cells in contingency tables, consists of two steps, the identification step and
the testing step. We slightly modify the identification step using Cook’'s distance measure to
be used for identifying influencial observations in GLMs. As an alternative measure of
identification we may choose an index measure for each single parameter of interest by
confining the Cook’s distance to a subset of parameters.

In identification steps the temporal number of influential observations are predetermined
from a scree plot of Cook’s distances. Under the assumed model the observation with the
largest Cook's distance measure is deleted and we refit the assumed model for the remaining
data. This process is repeated until all K, observations are identified. In testing step we test

the significance of identified observations using the changes in G? statistics after the
observation of interest is deleted. The wusual goodness-of-fit statistic such as Pearson
chi-squared statistic or LRT statistic can be used as a test statistic in the testing step, but
we prefer the LRT statistic because it can be partitioned into independent chi-squared
components. For the given significance level ¢ we take ¢;= a¢/K, to be a common
significance level at each testing step. This fact stems from the Bonferroni bound which is
known to be very conservative in controlling Type 1 error of test.

We explain the proposed procedure through two types of dataset, one for the logistic
regression model and the other for the loglinear model. The first example of Finney(1947),
which had also been explained by Pregibon(1981), reveals the same results as before in
detecting influential observations. In the second example with artificial dataset of
Simonoff(1988) we obtain an influential subset which is quitely different from that of outlying
cells detected by Simonoff(1988). We don’t have any other benchmark to compare the result
in the sense of influential observations.

Finally we remain it as a future research to do a Monte Carlo simulation to study some
properties of the proposed procedure such as the power of detecting influential observations
and the error rate of incorrectly detecting the observations which are not influential.
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