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for Detecting the Changes in Sequences of

Independent Exponential and Poisson Random Variates!l)
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Abstract

Default Bayesian method for detecting the changes in sequences of independent
exponential random variates and independent Poisson random variates is considered.
Noninformative priors are assumed for all the parameters in both of change models.
Default Bayes factors, AIBF, MIBF, FBF, to check whether there is any change or
not on each sequence and the posterior probability densities of change at each time
point are derived. Theoretical results discussed in this paper are applied to some
numerical data.
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1. Introduction

A sequence X={X,,X,,...,X,} of independent random variates, X;, X», ..., X,, is said

to have a change at an unknown time 7y if it is observed from the change model M,

f (x |60) y t=]"2,"',y’
M X, ~
F(x16), t=y+1,7+2,..,n,

where f (x|-) is a probability density function and unknown parameters vectors, 6 and

8, (8y%# 6,). The no-change model M, compared with the change model M, is defined by
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My: X, ~ f(x16p), t=12,.., %
The Bayes factor can be used as a Bayesian tool to assess whether there is any change

in a sequence of random variates or not, that is, which of two models, M, or M), is correct.
Let x={x],x3,...,%,}, & =6, and & =1(4,80,,7), where §&;,7=0,1, and &, is a
parameter space under the model M; j=0,1. Then the Bayes factor Bj, to compare a

change model M, to a no-change model M, is defined by By(x |b=1), where

m(x |b)
B b)y=—"T""-, (1.1
10(x| ) mo(xlb)
and
m;(x|b) = :.ﬁj(fj)lf(fﬂx)déj (1.2)
with a  probability  density  function f{x1&), a likelihood function

I{& 1x) =M%= fxx| &), a fraction b(0<H<1) of likelihood function, and a prior
distribution 7(&;) of parameter &, under the model M;, j=0,1. In equation (1.2),
m;(x |b=1), 7=0,1, is specially called a marginal or a predictive density of the model
Mj, ]=O,1
Bayesian approach requires the prior distributions for all the unknown parameters in

models,

The objective Bayesian methods based on noninformative priors are called ‘default’ or
‘automatic’  Bayesian methods in comparison to the subjective Bayesian method with
subjective prior information. Default priors like noninformative priors are objective but
most of them are improper, so the caution is needed because of unknown constants
incorporated into the Bayes factor. The intrinsic Bayes factor(IBF) of Berger and
Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) are classified as ‘default
or ‘automatic’ Bayes factors free from arbitrariness of noninformative improper priors.

An arithmetic IBF(AIBF) of Berger and Pericchi(1996) and median IBF(MIBF) of Berger and
Pericchi(1998) are defined as follows

B{™ = By(x |6=1) - + ZIBOI(xu) lb=1), (13)
BYPF— B (x [b=1) - Medan (p (D) 16=1)}, (1.4)

1<I<L
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where By (x()|b=1)=my(x(Dlb=1)/m(x(Db=1), m(x(Dib=1) is defined in (1.2)

by letting & by 1 and a full sample x by the /—th minimal training sample, x(/), and L
is the number of minimal training samples possible in the sample. The minimal training
sample implies the part of full sample with the minimal sample size to guarantee

0<mi{x |b=1)<{o0 for j=0,1 in equation (1.2). Finally the FBF of O’Hagan(1995) is
defined by

B =By(x |b=1) - By(x 19, (15)

where By (x |b) is obtained from the reciprocal of equation (1.1), and the fraction & of

likelihood function is usually and simply used as &= m/n with the size m of a minimal
training sample.

The Bayes factor By with the value greater than 1 will support the change model M;.
The posterior probability of one model gives the information of relative support for it to the

others. The posterior probability of change model M, is defined by

by

P M =,
(M) 1+ pBo

(1.6)

where * denotes AIBF, MIBF, or FBF, p; is the prior probability of the model

M;,;j=0, 1, and B, is the reciprocal of BY.

Approachs to previous studies on the change point problems in a sequence of independent
random variates are divided by two, non-Bayesian and Bayesian approach. We are interested

in its Bayesian approach. Underlying distributions for which the change point problems
were discussed are mainly binomial, normal, exponential, and Poisson (Broemeling(1974),
Smith(1975),

Lee and Heghinian(1977), Menzefricke(1981), Booth and Smith(1982), Raftery and
Akman(1986), Carlin, Gelfand, and Smith(1992), and Chung and Dey(1996)). Generally they
used conjugate priors(hierachial conjugate priors in Carlin, Gelfand, and Smith(1992)) or
nonimformative improper priors in the work of computing the marginal posterior probability
of each change time point and used conjugate priors in the work of computing the Bayes
factors. Exceptionally, Booth and Smith(1982) and Raftery and Akman(1986) solved an
arbitrary constant problem incorporated into a Bayes factor due to the assumption of the
noninformative improper prior by the imaginary constant idea of a thought experiment in
Spiegelhalter and Smith(1982). Jeong and Son(2000) obtained output on default Bayesian
method for detecting the change in a sequence of independent multivariate normal
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vectors under the assumption of noninformative improper priors for parameters of multivariate
normal distribution.

The default Bayesian method used in this paper for solving change point problems is
simpler to use than usual Bayesian method under conjugate priors or the imaginary constant
method of Spiegelhalter and Smith(1982). So it can be directly used in the beginning of
Bayesian model selection with no subjective prior consideration .

In this paper we discuss default Bayesian method for detecting the change in a sequence of
independent exponential random variaties(section 2) and Poisson random variates(section 3). As
priors are assumed noninformative improper priors for the parameters of each distribution and
the uniform prior for the change point. Default Bayes factors, AIBF, MIBF, and FBF, to check
whether there is any change or not on each sequence and the posterior density of change at
each time point are derived. A numerical study of section 4 shows the application of theoretical
results discussed in section 2 and section 3.

2. A Change in an Exponential Sequence

Consider two models, a no-change model M, and a change model M;, that shows the

change in a sequence of independent exponential random variates as follows

M, : X, ~ Exponential(8), t=1,2,...,n, (2.1)

Exponential (B), ¢=1,2,...,7,

M, : X, ~ (2.2)

Exponential (8), t=y+1,r+2,..,n,

where B and § are unknown positive parameters, and ¥ is an integer withl <y <n—1.
For a no-change model of (2.1) the likelihood function is given by

L(Blx)=B"" exp{— le,- / /3’}

and a noninformative improper prior, (8 =1/8, B> 0, is assumed. Thus we can

compute
mo( % | b>=f0°°n0<ﬂ>zé’(ﬁ| x)dB =I{bn) (b glx,) ~tn, 23)

For a change model of (2.2) the likelihood function is given by
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W88,y 10=878"" exp{— Rz / 8)exn (- 3 5/ 5]

and a noninformative improper prior, m,(8,8) = 1/(85), 8>0, >0, an uniform prior,
n(n=1/(n—-1), r=1,2,...,n—1, and (B, 8, 7) =m (8,0 + m(y) are assumed.
Now, we can compute

m(y,xl8) = [ [ " 7(8,6,91%8.8, 7 |)d8ds

= I(onI{b(n—n} .
(n=1)b™ lei) K i=i7:+1xi) on=r

The marginal posterior probability density, f (¥ |x), of ¥ is obtained by

_ m1(7’,x l6=1)
f(rlx) m(x =1 (2.4)
where
m(x|b) = Slml(% x |b). (2.5)

The size of a minimal training sample is 2 equal to a minimal sample size to guarantee

finite marginal densities for both models, My and M;. Our minimal training sampling plan is

to sample in order to preserve the continuity of time. Thus, under the no-change model M,

of (2.1) minimal training samples are
x(D)={(x;,x;41) | x5, x;41~ Exponential ()}, [/=1,2,...,n—1,

and under the change model M) of (2.2) minimal training samples are
x(0)={(x; %41 x; ~ Exponential (8), x;+1~ Exponential (8)}, /=1,2,...,n—1.

Replacing # by 2, v by 1, b by 1, and x by x() in (23) and (25), the predictive
densities of minimal training samples under each model are respectively given by for
=1,2,..., n—1,

mo x(Db=1) = (x;+ x,41) ~° (2.6)

and
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m(x(Db=1)= (%, x,4+1) -1 2.7

Finally, after (1.1)-(1.5) are filled with (2.3), (25), (26), (27), the AIBF, B{*, the MIBF,

B%IBF, and the FBF, BSBF are straightforwardly obtained.

3. A Change in a Poisson Sequence

Consider two models, a no-change model M; and a change model M;, in a sequence of

independent Poisson random variates as follows
M, : X, ~ Possion(p), t= 1,2,...,n, 3.1
Possion(p), t = 1,2,...,7,

Ml . Xt ~ (32)
Possion(y), t=y+1,7+2,...,n,

where x and 7 are unknown positve parameters, and 7 is an integer with 1< y< »n—1.

For a no-change model M, of (3.1) the likelihood function is given by

pIgS
(el x)=exp{—np}p ™ | = xj!

and a noninformative improper prior |, 71'0(;1)=/f1/2, >0, 1is assumed. Now we can

obtain

1
s glxj+-§)

Sl
(T, ) om) =2

(3.3)

ol x18)= [ moC) ) %) du=

For change model M, of (3.2) the likelihood function is

Z xj 2 xj
L, 7l x)=exp{ —yu—(n—y)njp ™ 97" = x!

and a noninformative improper prior, m;{x, 77)=(#77)_1/2 , #>0, 7 > 0, an uniform prior
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m(N=1mn-1), r=1,2,..,n—1, and m(u,n 7 = m(x,n - 7(y) are assumed.
Now, we can compute

mi(y, x 1) = fo fo mlp, 0, VB, 0,7 | x)dudy

Hb2;=1 xi+ %)Hb2?=7+1 x]'+ %)

r
j=1%j

bz/" 7+l xi+'2L )

> 1
(n=1) U=y xD%6D = " 2 (b= )

The marginal posterior probability density, Ayl x), of y given data x is defined as same
as equation (2.4) and (2.5).

Also, the size of a minimal training sample is the same as the exponential case.
After following the minimal training sampling scheme as exponential case, the predictive

densities of minimal samples under the model M, and M, are respectively derived by

x,+x,1“-2L

mo( x(Dlb= 1)=[’(x,+x1+1+%)/(2 - x! -x,+1!) (3.4)

and
m( 2 (DIb=1)= M+ $IMxrr+ 5/ Ceid - 21111) | 3.5

Finally, after (1.1)-(1.5) are filled with (3.3), (25), (34), (35) the AIBF, Biy™* the MIBF,

B%IBF, and the FBF, BfBBF, are directly obtained.

4. Numerical Study

We perform a simulation study to support theoretical results developed in previous sections.
Wwith 10,000 replications five exponential(Poisson) data sets of sample size 30 with 8(x)=1.0
and 6(»=0.2,0.5,1.0,2.0,5.0 are simulated from X,~Exponential(1.0)(Poisson(1.0)),
t=1,2, ...,y and X,~ Exponential( 8)(Poisson( 7)), t=7+1,7+2,...,n. The change point
is given by y=20(10) in case of Exponential(Piosson).

Table 4.1 shows results of the posterior probability of a change model M; computed from

(1.6) with the equal prior probability for each model through the AIBF, the MIBF, the FBF
computed from (1.3), (1.4.), (1.5). The values of the first line and the second line in each cell
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of Table are the mean and the standard deviation of 10,000 replications, respectively. The
value in the parenthesis implies the proportion of replications with By, greater than 1.
As the size of change is larger, the posterior probabilities to support the change model and

the proportions of replications with By greater than 1 are close to 1. For an
exponential(Poisson) data with &(7»)=1.0 to explain the no-change model 10~13%
(13~14%) of 10,000 replications lead to the wrong model selection.

Proportion histograms of the mode 7, that maximize the posterior probability density of the

change point 7 in (2.4) given exponential data and Poisson data are shown in Figure 4.1 and
Figure 4.2 , respectively. The histogram of U-type for a no-change data with &(»)=1.0
implies that the data set is generated from the same distribution with no change. This U-type
histogram is changed to the histogram degenerated at y=20(10) in exponential(Poisson) case
as the degree of change is larger.

In our research a number of simulation experiments were performed with various &(7)’s,
sample sizes, change points 7’'s. Though their results are not contained in this paper because
of space limited we can see that simulation results are more coincident with our theoretical

expectation as the size of sample is larger and the value of 7y is close to n/2 .

Table 4.1: Results of posterior probability for the change model M;.

Exponential Model Poisson Model

o) AIBF MIBF FBF AIBF MIBF FBF
0.893 0.899 0.881 0.791 0.795 0.764

0.2 0.156 0.149 0.165 0.214 0.216 0.228
(0.96) 0.97) (0.95) (0.85) (0.85) (0.81)

0.447 0.496 0.453 0.513 0.492 0.493

0.5 0.226 0.224 0.224 0.217 0.225 0.213
' (0.38) (0.41) (0.34) (0.41) (0.39) (0.38)
0.327 0.347 0.307 0.368 0.360 0.371

1.0 0.148 0.150 0.143 0.140 0.140 0.133
0.12) (0.13) (0.10) (0.14) (0.13) (0.13)

0.500 0518 0.477 0.588 0.593 0.590

2.0 0.248 0.245 0.247 0.242 0.237 0.233
(0.42) (0.44) (0.38) (0.55) (0.57) (057)

0.931 0.935 0.924 0.999 0.999 0.999

5.0 0.146 0.140 0.155 0.008 0.007 0.008
(0.96) 0.97) (0.96) (1.00) (1.00) (1.00)
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Figure 4.1: Histograms of replications of the mode ¥, of change point given the exponential

data with (a) 6=0.2, (b) 6§=0.5, (c) §=1.0, (d) §=2.0, (e) 6=5.0.
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Figure 4.2 : Histograms of replications of the mode ¥, of change point given the Poisson

data with (a) =0.2, ) 7=0.5, () 2=1.0, (d) 2=2.0, (e) »=5.0, and (f) the posterior
probability of change point in British coal mining disaster data.
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Now, we apply default Bayesian method for the Poisson change model to British coal
mining disaster data during 112 year period, 1851-1962 given by Jarrett(1979). The

computation gives B> =6.7E+12, B =6 5E+12, BiF =4.9E+12, and equally (M| x)

=1.0 through three default Bayes factors which strongly support the change model. Also,
the marginal posterior probability of each change point is shown in (f) of Figure 4.2. The
largest three posterior probabilities are 0.238, 0.185, and 0.146 at »=41,40, and 39,
respectively. All these results coincide with those of Raftery and Akman(1986), Carlin, Gelfand,
and Smith(1992), and Chung and Dey(1996).
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