A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Jong-Sun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Min-Soo (MEMS Lab., Samsung Advanced Institute of Technology) ;
  • Lee, Joon-Sik (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Published : 2002.05.01

Abstract

Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

Keywords

References

  1. Brooks, A. N. and Hughes, T. J. R., 1982, 'Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations,' Comput. Methods Appl. Mech. Engrg., Vol. 32, pp. 199-259 https://doi.org/10.1016/0045-7825(82)90071-8
  2. Chorin, A. J., 1968, 'Numerical Solution of the Navier-Stokes Equations,' Math.Comput., Vol. 22, pp. 745-762 https://doi.org/10.2307/2004575
  3. De Sampaio, P. A. B., 1991, 'A Petrov-Galerkin Formulation for the Incompressible Navier-Stokes Equations using Equal Order Interpolation for Velocity and Pressure,' Int. J. Numer. Methods Engrg., Vol. 31, pp. 1135-1149 https://doi.org/10.1002/nme.1620310608
  4. Dhatt, G., Gao, D. M. and Cheikh, A. B., 1990, 'A Finite Element Simulation of Metal Flow in Moulds,' Int. J. Numer. Meth. Eng., Vol. 30, pp. 821-831 https://doi.org/10.1002/nme.1620300416
  5. Donea, J., Giuliani, S. and Laval, H., 1982, 'Finite Element Solution of the Unsteady Navier-Stokes Equations by a Fractional Step Method,' Comput. Methods Appl. Mech. Engrg., Vol. 30, pp. 53-73 https://doi.org/10.1016/0045-7825(82)90054-8
  6. Floryan, J. M. and Rasmussen, H., 1989, 'Numerical Methods for Viscous Flows with Moving Boundaries,' Appl. Mech. Rev., Vol. 42, No. 12, pp.323-341 https://doi.org/10.1115/1.3152416
  7. Gao, D. M., 1999, 'A Three-Dimensional Hybrid Finite Element-Volume Tracking Model for Mould Filling in Casting Processes,' Int. J Numer. Methods Fluids, Vol. 29, pp. 877-895 https://doi.org/10.1002/(SICI)1097-0363(19990415)29:7<877::AID-FLD814>3.0.CO;2-7
  8. Gueyfier, D., Li, J., Nadim, A., Scardovelli, R. and Zaleski, S., 1999, 'Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows,' J. Comput. Phys., Vol. 152, pp.423-456 https://doi.org/10.1006/jcph.1998.6168
  9. Harlow, F. H. and Welch, J. E., 1995, 'Numerical Calculation of Time-Dependent Viscous Incompressib le Flow of Fluid with Free Surface,' Phys. Fluids, Vol. 8, pp. 2182-2189 https://doi.org/10.1063/1.1761178
  10. Harvie, D. J. E. and Fletcher, D. F., 2000, 'A New Volume of Fluid Advection Algorithm: The Stream Scheme,' J. Comput. Phys., Vol. 162, pp. 1-32 https://doi.org/10.1006/jcph.2000.6510
  11. Harvie, D. J. E. and Fletcher, D. F., 2001, 'A New Volume of Fluid Advection Algorithm: the Defined Donating Region Scheme,' Int. J. Numer. Methods Fluids, Vol. 35, pp. 151-172 https://doi.org/10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4
  12. Heut, J.F. and Ilinca, F., 1999, 'A Finite Element Method for Casting Simulations,' Numerical Heat Transfer A, Vol. 36, pp. 657-679 https://doi.org/10.1080/104077899274507
  13. Hirt, C. W., Nichols, B. D., 1981, 'Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,' J. of Computational Physics, Vol. 39, pp. 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  14. Kawahara, M. and Ohmiya, K., 1985, 'Finite Element Analysis of Density Flow using the Velocity Correction Method,' Int. J. Numer. Methods Fluids, Vol. 5, pp. 981-993 https://doi.org/10.1002/fld.1650051104
  15. Kim, M. S., Shin, S. and Lee W. I., 2000, 'A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface (I)-New Free Surface Tracking Algorithm and Its Verification,' Trans. of KSME(B), Vol. 24, pp. 1555-1569. (in Korean)
  16. Kim, M. S., Park J. S. and Lee W. I., 2000, 'A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface (II)-Application to the Cavity Filling and Sloshing Problems,' Trans. of KSME (B), Vol. 24, pp. 1570-1579. (in Korean)
  17. Laval, H. and Quartapelle, L., 1990, 'A Fractional-Step Taylor-Galerkin Method for Unsteady Incompressible Flows,' Int. J. Numer. Methods Fluids, Vol. 11, pp. 501-513 https://doi.org/10.1002/fld.1650110504
  18. Lewis, R. W., Usmani, R. W. and Cross, J. T., 1995, 'Efficient Mould Filling Simulation in Castings' by an Explicit Finite Element Method,' Int. J. Numer. Methods Fluids, Vol. 20, pp.493-506 https://doi.org/10.1002/fld.1650200606
  19. Martin, J. C. and Moyce, W. J., 1952, 'An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane,' Philos. Trans. Roy. Soc. London Serl A, Math. Phys. Sci., Vol. 244, pp. 312-324 https://doi.org/10.1098/rsta.1952.0006
  20. Mizukami, A. and Tsuchiya, M., 1984, 'A Finite Element Method for the Three-Dimensional Non-Steady Navier-Stokes Equations,' Int. J. Numer. Methods Fluids, Vol. 4, pp. 349-357 https://doi.org/10.1002/fld.1650040405
  21. Nakayama, T. and Mori, M., 1996, 'An Eulerian Finite Element Method for Time-Dependent Free Surface Problems in Hydrodynamics,' Int. J. Numer. Methods Fluids, Vol. 22, pp. 175-194 https://doi.org/10.1002/(SICI)1097-0363(19960215)22:3<175::AID-FLD352>3.0.CO;2-F
  22. Noh, W. F. and Woodward, P., 1976, 'SLIC (Simple Line Interface Calculation),' in Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamis, ed. van de Vooren, A. I. and Zandbergen, P. J., Lecture Notes in Physics, Vol. 59, pp.330-340, Springer-Verlag, New York, USA
  23. Ramaswamy, B., 1988, 'Finite Element Solution for Advection and Natural Convection Flows,' Computers & Fluids, Vol. 16, pp. 349-388 https://doi.org/10.1016/0045-7930(88)90023-0
  24. Ramaswamy, B. and Jue, T. C., 1992, 'Some Recent Trends and Developments in Finite Element Analysis for Incompressible Thermal Flows,' Int. J. Numer. Methods Engrg., Vol. 35, pp.671-707 https://doi.org/10.1002/nme.1620350405
  25. Ramshaw, J. D. and Trapp, J. A., 1976, 'A Numerical Technique for Low-Speed Homogeneous Two-Phase Flow with Sharp Interface,' J. Comput. Phys., Vol. 21, pp.438-453 https://doi.org/10.1016/0021-9991(76)90039-5
  26. Rider, W. J. and Kothe, D. B., 1998, 'Reconstructing Volume Tracking,' J. Comput. Phys., Vol. 141, pp. 112-152 https://doi.org/10.1006/jcph.1998.5906
  27. Rudman, M., 1997, 'Volume-Tracking Methods for Interfacial Flow Calculations,' Int. J. Numer. Methods Fluids, Vol. 24, pp. 671-691 https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  28. Scardovelli, R. and Zaleski, S., 1999, 'Direct Numerical Simulation of Free-Surface and Interfacial Flow,' Annual Reviews Fluid Mechanics, Vol. 31, pp. 567-603 https://doi.org/10.1146/annurev.fluid.31.1.567
  29. Shin, S. and Lee, W. I., 1997, 'Finite Element Analysis of Flow with Moving Free Surface by Volume of Fluid Method,' Trans. of KSME(B), Vol. 21, No.9, pp. 1230-1243. (in Korean)
  30. Shin, S. and Lee, W. I., 2000, 'Finite Element Analysis of Incompressible Viscous Flow with Moving Free Surface by Selective Volume of Fluid Method,' Int. J. Heat and Fluid Flow, Vol. 21, pp. 197-206 https://doi.org/10.1016/S0142-727X(99)00083-1
  31. Usmani, A. S., Cross, J. T. and Lewis, R. W., 1992, 'A Finite Element Model for the Simulations of Mould Filling in Metal Casting and the Associated Heat Transfer,' Int. J. Numer. Methods Engrg., Vol. 35, pp.787-806 https://doi.org/10.1002/nme.1620350410
  32. Young, D. L., 1982, 'Time-Dependent Multi-Material Flow with Large Fluid Distortion,' in Numerical Methods for Fluid Dynamics, ed. Morton, K. W. and Baines, M. J., pp.273-285, Academic Press, New York