Spectrum Characteristics and Stress Induced Birefringence of Fiber Bragg Grating Embedded into Composite Laminates

복합재 평판에 삽입된 광섬유 브래그 격자의 스펙트럼특성과 응력유도복굴절

  • Lee, Jung-Ryul (Mechanical and materials Engineering Department, SMS division, Ecole Nationale Superieure des Mines de Saint Etienne) ;
  • Kim, Chun-Gon (Author to whom correspondence should addressed) ;
  • Hong, Chang-Sun (Department of Mechanical Engineering, Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology(KAIST))
  • Published : 2002.06.01

Abstract

Fiber Bragg grating(FBG) like other optical fiber sensors also has the merit of embedding capability. To increase their actual value related to embedding capability, this paper reported the reliability and signal characteristics of FBGS embedded in composite laminates. The microphotographs of embedded optical fibers visualized the embedding environments of stripped optical fibers and coated optical fibers. Based on these microphotographs and cure monitoring performed using FBGs, we could understand that the main cause breaking the unique Bragg condition of low-birefrigence FBG were residual stress artier curing and reported the stale of stress/strain of optical fiber quantitatively. The cure monitoring also showed the history of splitting peak of a stripped FBG along cure processing. In addition, we could obtain a transverse insensitive grating(TIG) with ease by recoating a stripped FBG. TIG has good advantage for real-time signal processing.

다른 광섬유 센서와 마찬가지로 광섬유 브래그 격자센서도 삽입가능의 장점을 가진다. 삽입가능과 관련된 실제적 가티를 높이기 위해서 본 논문에서는 복합재 평판에 삽입된 브래그 격자센서의 안전성과 스펙트럼특성이 연구되었다. 피복광섬유와 피복이 벗겨진 광성유의 삽입 환경이 현미경 분석에 의해 수행되어졌고 이 현미경 사진들과 성형모니터링 (cure monitoring)의 결과를 기초하여, 저복굴절(Li-Bi) 광섬유에 새겨진 브래그 격자의 단일 브래그 조건을 붕괴하는 주원인이 성형 잔류음력임을 확인했고 이로 인해 광성유가 겪게 되는 응력/변형률 상태를 정략적으로 보고하였다. 또한 성형모니터링은 브래그 공진파장이 어떻 게 분리되어져 가는지 묘사하였고 횡응력 미감도 브래그 격자(TIG)가 재코팅 방법에 의해 쉽게 획득되어짐을 보였다. TIG는 실시간 신호 처리와 관련하여 중요만 장점으로 작용한다.

Keywords

References

  1. OFS'88 In-fiber Bragg-grating sensors G. Meltz;W. W. Morey;W. H. Glenn;J. D. Farina
  2. U.S. Patent No. 4,761,073 Distributed spatially resolving optical fiber strain gauge G. Meltz;W. H. Glenn;E. Snitzer
  3. OFS'89 Bragg-grating temperature and strain sensors W. W. Morey(et al.)
  4. SPIE1370 Multi-function, distributed optical fiber sensor for composite cure and response monitoring J. R. Dunphy;G. Meltz;F. P. Lamm;W. W. Morey
  5. United States Patent 5,399,854 J. R. Dunphy (et al.)
  6. Electronics Letter v.32 no.13 Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre R. B. Wagreich;Atia, W. A.;Singh, H.;Sirkis, J. S. https://doi.org/10.1049/el:19960806
  7. Experimental Mecahnics v.39 no.3 Measurement of transverse strains with fiber Bragg gratings C. M. Lawrence;D. V. Nelson;E. Udd;T. Bennett https://doi.org/10.1007/BF02323553
  8. OFS-13 High pressure and temperature sensing for the oil Industry using fiber Bragg gragtings written onto side hole single mode fiber Robert, J. S.;Tsutomu, Y.
  9. Applied Optics v.20 Pressure desensitization of optical fibers N. Lagako;J. Bucaro https://doi.org/10.1364/AO.20.002716
  10. Journal of lightwave Technology v.6 no.1 Determination of the individual strain-optic coefficients in single-mode optical fibers A. Bertholds;R. Dandlker https://doi.org/10.1109/50.3956
  11. Journal of Composite Materials v.31 no.7 Stress and Deformations Induced during Manufacturing. Part Ⅱ: A Study of the Spring-In Phenomenon L. K. Jain;B. G. Lutton;Y. W. Mai;R. P https://doi.org/10.1177/002199839703100704
  12. Optics Letters v.23 no.11 Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser S. H. Yun;D. J. Richardson;B. Y. Kim https://doi.org/10.1364/OL.23.000843