Pupil and Lip Detection using Shape and Weighted Vector based on Shape

형태와 가중치 벡터를 이용한 눈동자와 입술 검출

  • 장경식 (동의대학교 멀티미디어공학과)
  • Published : 2002.06.01

Abstract

In this paper, we propose an efficient method for recognizing pupils and lip in a human face. Pupils are detected by a cost function, which uses features based on the eye's shape and a relation between pupil and eyebrow. The inner boundary of lip is detected by weighted vectors based on lip's shape and on the difference of gray level between lip and face skin. These vectors extract four feature points of lip : the top of the upper lip, the bottom of the lower lip, and the two corners. The experiments have been performed for many images and show very encouraging result.

이 논문은 눈동자와 입술을 효과적으로 인식하는 방법을 제안하였다. 얼굴에서 가장 어두운 부분 중의 하나인 눈동자와 밝은 부분인 흰자위로 구성되는 눈의 형태적인 특징과 눈동자와 눈썹 사이의 관계를 반영하는 평가함수를 이용하여 눈동자를 인식하였다. 입술 형태, 입술과 인접한 피부와의 밝기 차이를 반영하는 가중치 벡터들을 사용하여 두 입술 사이의 경계선과 입술의 4개 특징점(양 끝점 및 위와 아래의 끝점)을 찾았다. 여러 영상들에 대해 실험하여 좋은 결과를 얻었다.

Keywords

References

  1. M.-H. Yang, N. Ahuja, D. Kriegrnan, 'A Survey on Face Detection Methods,' IEEE Trans. on PAMI, to appear 2001
  2. A. R Mlrhosseinl, H. Yan, K-M. Lam, 'Adaptive Deformable Model for Mouse Boundary Detection,' Optical Engineering, Vol. 37 No.3, pp.869-875, 1998 https://doi.org/10.1117/1.601920
  3. N. Oliver, A. Pentland, 'LAFTER: Lips and Face Real Time Tracker,' IEEE CVPR'97, pp.123-129, 1997 https://doi.org/10.1109/CVPR.1997.609309
  4. E. Saber, A. M. Tekalp, 'Frontal-view Face Detection and Facial Feature Extraction Using Color, Shape and Symmetry Based Cost Function,' Pattern Recognition Letters 19, pp.669-680, 1998 https://doi.org/10.1016/S0167-8655(98)00044-0
  5. S. Teskeridou, I. Pitas, 'Facial Feature Extraction in Fontal Views Using Biometric Analogies,' IX European Signal Processing Conference, Vol. I, pp.315-318, 1998
  6. J. Yang, R Stiefelhagen, U. Meier, A. Waibel, 'Real-time Face and Facial Feature Tracking and Application,' Proc. Auditory-Visual Speech Processing, pp.79-84, 1998
  7. B. Moghaddam, A. Pentland, 'Probabilistic Visual Learning for Object Detection,' IEEE ICCV'95, pp.786-793, 1995 https://doi.org/10.1109/ICCV.1995.466858
  8. B. Moghaddam, W. Wahid, A. Pentland, 'Beyond Eigen Faces : Probabilistic Matching for Face Recognition,' IEEE Conf. Automatic Face and Gesture Recognition, pp.30-35, 1998 https://doi.org/10.1109/AFGR.1998.670921
  9. T. Wark, Sridharan, V. Chandran, 'An Approach to Statistical Lip Modelling for Speaker Identification via Chromatic Feature Extraction,' IEEE ICPR' 98, Vol. 1, pp.123-125, 1998 https://doi.org/10.1109/ICPR.1998.711095
  10. S. Basu, N. Oliver, A. Pentlan, '3D Modeling and Tracking of Human Lip Motions,' IEEE ICCV'98, pp.337-343, 1998 https://doi.org/10.1109/ICCV.1998.710740
  11. P. Delmas, Y. Coulon, V. Fristot, 'Automatic Snakes for Robust Lip Boundaries Extraction,' IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 6. pp.3069-3072, 1999 https://doi.org/10.1109/ICASSP.1999.757489
  12. M. Lievin, P. Delmas, Y. Coulon, F. Luthon, V. Fristot, 'Automatic Lip Tracking : Bayesian Segmentation and Active Contours in a Cooperative Scheme,' IEEE Conf. on Multimedia, Computing and System, pp.691-696, 1999 https://doi.org/10.1109/MMCS.1999.779283
  13. Devroye, Luc, A Probabilistic Theory of Pattern Recognition, Springer, 1996